
The Final Report on:

Development of a Dynamically Configurable,
Object-Oriented Framework for Distributed,
Multi-modal Computational Aerospace
Systems Simulation

Funded by

NASA Langley Resarch Center
NASA Information Technology (IT) Program grant number NAG- 1-2244

Abdollah A. Afjeh, Ph.D.
John A. Reed. Ph.D.

Department of ,Mechanical, Industrial and Manufacturing Engineering
The University of Toledo
October 30,2003

Summary

This report describes the progress made in the first two years (Sept. 1. 1999 to Aug. 31,
2001) of work at The University of Toledo under the NASA Information Technology
(IT) Program grant number NAG-1-2244. This research was aimed at developing a new
and advanced simulation framework that will significantly improve the overall efficiency
of aerospace systems design and development. The project was originally a three-year
project with specific tasks to be completed in each of the three years. However, the
project was funded only for two years and the third year‘s funding was thus unavailable
to complete the tasks planned in the original proposal. At the end of each year, a progress
report was sent to the Grant Monitor, Mr. Wayne Gerdes. The reports are reproduced in
Appendix A. The work accomplished under the grant is already described in the progress
reports and accordingly will not be repeated here. Four papers, two journal papers and
two conference papers were published primarily based on the work done on this project.
Three of these publications occurred after the second year report had been submitted;
hence a copy of these papers is provided for completeness in Appendix B. The second
journal paper entitled “On XML-based Integrated Database Model for Multidisciplinary
Aircraft Design” is accepted for publication and is scheduled to appear in AIAA Journal
of Aerospace Computing, Information, and Communication in 2004.

APPENDIX A: Reports

1. Year 1 Progress Report

2. Year 2 Progress Report

A first year progress report on:

Development of a Dynamically Configurable,
Object-Oriented Framework for Distributed,
Multi-modal Computational Aerospace
Systems Simulation

Abdollah A. Afjeh, Ph.D.
John A. Reed, Ph.D.

Department of Mechanical. Industrial and Manufacturing Engineering
The University of Toledo

October 30,2000

Summary
This report describes the progress made in the first year (Sept. 1, 1999 LO Aug. 3 1,2000) of
work at The University of Toledo under the NASA Information Technology (IT) Program
grant number NAG-1-2244. This research is aimed at developing a neiv and advanced
simulation framework that will significantly improve the overall efficiency of aerospace
systems design and development. This objective will be accomplished through an
innovative integration of object-oriented and Web-based technologies ivith both new
and proven simulation methodologies. The basic approach involves Ihree major areas of
research:

Aerospace system and component representation using a hierarchical object-oriented
component model which enables the use of multimodels and enforces component
interoperability.

Collaborative software environment that streamlines the process of developing,
sharing and integrating aerospace design and analysis models.

. Development of a distributed infrastructure which enables Web-based exchange of
models to simplify the collaborative design process, and to support computationally
intensive aerospace design and analysis processes.

Research for the first year dealt with the design of the basic architecture and supporting
infrastructure, an initial implementation of that design, and a demonstration of its
application to an example aircraft engine system simulation.

NAG-1-2244 1st Year Report I October 30, 2000

Year 1 Accomplishments
Work was begun in several areas during the first year of this three year grant. LIajor
results are summarized below. A more comprehensive description of the methodology
and initial accomplishments, along with an overall vision statement of our long term
research goals, was published in Ref. 1.

Common Model Framework
An object-oriented domain framework for representing aerospace components. systems
and subsystems has been developed. The framework, which we call the Common Model
Framework (CMF) , provides the foundation for the Denali' aerospace simulation
system. The framework formalizes an approach for abstracting aerospace domain
physical structure and mapping it to the computational domain. As shown in Figure 1,
aerospace systems, such as an aircraft, are hierarchically decomposed (Fig. lb) into
subsystems and components (e.g., fuselage, engines, vertical stabilizer, etc.), Lvhich are
then abstracted using a control volume approach (Fig. IC). The control volumes provide
both a physical geometry representation as well as a convenient mechanism for
mathematical modeling. Each component can be further decomposed to identiify more
basic components. The most basic components may be represented in the computational
domain by an object class. Following the Denali CMF architecture, the more basic classes
can be instantiated and the various objects combined to form more complex objects. This
object composition provides a powerful and flexible mechanism for modeling and
simulating aerospace systems, allowing complex aerospace systems to be composed in
the same familiar manner as the physical system.

There are four basic entities in the Denali architecture: Element, Port, Connector and
DomainModel (see Fig. Id). The JavaTM interface Element represents a control \.olume,
and defines the key behavior for all engineering component classes incorporated into
Denali. It declares the core methods needed to initialize, run and stop model execution, as
well as methods for managing attached Port objects. Classes implementing this interface
generally represent physical components, such as a compressor, turbine blade. or
bearing, to name a few. However, they may also represent purely mathematical
abstractions such as a cell in a finite-volume mesh used in a CFD analysis. This flexibility
permits the component architecture to model a variety of physical systems.

An Element may have zero or more Port objects associated with it. The Port interface
represent a surface on a control volume through which some entity (e.g., mass or energy)
or information passes. Ports are generally classified by the entity being transported
across the control surface. For example, a Compressor object might have two FluidPort
objects-representing the fluid boundaries at the Compressor entrance and exit-and a
StructuralPort object, representing the control surface on the Compressor through
which mechanical energy is passed (from a driving shaft).

1. Not an acronym.

NAG-1-2244 1st Year Report 2 October 30.2000

Control
Volume /

J
Control k . _.- . - _ _ _ Volume

"
I

_- -

/

Structural
Port

4
:
1

I : Fluid
Element : Port

Figure 1: Mapping of aerospace physical domain to computational framework.

NAG-1-2244 1st Year Report 3 October 30, 2000

The common boundary between consecutive control volumes is represented by a
Connector object. The interface Connector permits two Element objects to
communicate by passing information between connected Port objects (see Fig. ld). It is
also responsible for data transformation and mapping in situations where the data being
passed from Ports is of different type. The need for such data transformation can range
from simple situations, such as conversion of data units, to very complex ones involving
a mismatch in model fidelity (e.g., connecting a 2-D fluid model to a 3-D fluid model) or
disciplinary coupling (e.g. mapping structural analysis results from a finite-element
mesh to a finite-volume mesh used for aerodynamic analysis). For all but the simplest
cases, the algorithms needed to perform the data transformation or mapping will tend to
be very complex. To improve reusability, Connector delegates transformation/mapping
responsibilities to a separate Transform object (see Fig. Id) which encapsulates the
necessary intelligence to expand/contract data and map data across disciplines.

The DomainModel represents the mathematical model used to define component
behavior. During component design and analysis, many different models (i.e.,
multimodels) are used. During preliminary design the models are relatively simple and
may be solved analytically or using basic numerical methods. However, models used in
latter phases of design can be quite complicated. In these cases, approximate solutions
are obtained by discretization of the equations on a geometrical mesh and applying
highly specialized numerical solvers. The presence of these complex mathematical
models and the numerical tools needed to solve them suggest that it is desirable to
encapsulate these features and remove them from the Element structure. This enhances
the modularity of Element, allowing new Element classes to be added without regard to
the mathematical model used, and conversely to add new models without affecting the
Element class. To achieve this, Denali utilizes the Strategy design pattern-to encapsulate
the mathematical model in a separate object. The benefit of this pattern is that families of
similar algorithms become interchangeable, allowing the algorithm-in this case the
DomainModel-to vary independently from the Elements that use it. This admits the
possibility of run-time selection of an appropriate DomainModel for a given Element:
however, this is currently not used in Denali. Furthermore, encapsulating the
DomainModel in a separate object also encourages the “wrapping” of pre-existing,
external software packages. For example, the Fan DomainModel in Fig. Id might “wrap”
a pre-existing three-dimensional Navier-Stokes or Euler flow solver to provide steady-
state aerodynamic analysis of fluid flow within the Fan. This approach allows proven
functionality of existing software analysis packages to be easily integrated within an
Element.

The standard object interfaces of the Denali CMF ensure that each component object
interoperates with other component objects. This is essential for providing a stable
modeling environment which allows complex models to be developed using object
composition and class inheritance. Furthermore, the standard interfaces of the CMF
architecture provide a “pluggable” architecture wherein new components can be added
at runtime.

NAG-1-2244 1st Year Report 4 October 30,2000

As an example application of the CMF, a model of a the NASA/GE Energy Efficient
Engine (EEE) gas turbine aircraft engine was created. Elements representing the inlet,
fan, compressor, combustor, shafts, turbines, nozzle and ducts in a turbofan engine were
developed. The DomainModel for each Element was developed using a zero-
dimensional mathematical treatment. Furthermore, only an aerothermodynamic
disciplinary analysis was used. At this level of fidelity and discipline, component
behavior was defined by the unsteady, space-averaged forms of the aerothermodynamic
conservation equations. Empirical data, in the form of performance maps, were used to
define operating behavior for rotating components, such as Compressors and Turbines.
The component objects were combined using appropriate zero-dimensional fluid and
mechanical Port and Connector objects. A Newton-Raphson numerical execution
scheme (also provided as part of the Denali system) was used to sole the model
equations and simulate both steady and unsteady engine operation. Results of the tests
were validated against other existing FORTRAN gas turbine engine simulation
programs.

Connection Services Frame work
Aerospace design and analysis requires the interaction of many people at different
geographic locations. Even if these individuals are part of the same company, today’s
increasingly international business environment and corporate structures requires us to
assume that the participants may not be at the same location. Moreover, strategic
partnerships between companies (even those competing in the same business domain)
are becoming more common place requiring additional interaction across company
boundaries. As a result, it is important that our simulation framework enable users to
collaborate by sharing models and data in a heterogeneous Lvork environment.

Denali supports the exchange of models through the use of mobile code. Mobile code is
defined as program code which can be transferred from one computer to another and
executed (without recompilation) on the receiving computer. An example of this is the
Java byte-code which is executed on the receiving machine by a Java Virtual Machine
interpreter. Denali utilizes this feature to allow designers to create, compile, verify and
share Java-based component models. Following the design guidelines specified by the
CMF, aerospace components are created, placed on a Web-server and downloaded to a
Denali client. Once loaded to the client, the model can be combined without additional
programming effort to form a new model.

In aerospace design and analysis, as in many other engineering domains, access to
distributed resources is critical. The computationally intensive nature of higher fidelity
analysis codes (such as Computational Fluid Dynamics) require access to high
performance supercomputers or networks of workstations. Furthermore, the use of
legacy code in aerospace design and analysis often require access to codes that are
constrained to run on specific architectures or operating systems. As a result, it is
important that our simulation framework enable users to access the appropriate
computing resources for the target application.

NAG-1-2244 1st Year Report 5 October 30. 2000

The Denali Connection Services Framecvork (CSF) provides the necessary infrastructure
to enable transparent access to distributed resources using both Web-based exchange of
models, and distributed object service. Web-based models-models ivritten entirely in
Java-are created, compiled, verified, tested and placed on an HT’TP web server where
they can be accessed from a Denali client. Non-Java models, such as legacy FORTRAN
software, which are fixed to a particular location due to code size, computing
architecture or proprietary reasons, are placed on remote machines and wrapped by a
Java object. This wrapper defines an interface to the legacy code and acts as a proxy,
enabling the legacy code to be viewed as a local object. As with the ICeb-based models,
the Java wrapper for the remote legacy code is placed on a Web sener so that it may be
downloaded to the Denali client.

The Denali client, positioned on a user’s workstation or personal computer, locates
available Web-based and remote models by querying one or more n.ell-known naming
or directory service. Using a Component Browser, a user can browse the objects and data
stored in a naming or directory service (see bottom-right corner of Fig. 2). Denali
currently supports access to common naming and directory services. such as NDS,
LDAP, CORBA Naming Service (COS Naming), and RMI Registry. through the Java
Naming and Directory Interface UNDI). JNDI is an API that provides an abstraction that
represents elements common to the most widely available naming and directory
services. JNDI also alloLvs different services to be linked to together to form a single
logical namespace called a federated naming service. Using the Component Browser,
Denali users are able to navigate across multiple naming and direcrory services to locate
simulation data, objects and components.

Currently, we mainly use an LDAP (Lightweight Directory Access Protocol) service
which provides both naming (objects are referred by their name) and directory (objects
are stored in hierarchies) access. We utilize the OpenLDAP software. an open-source
implementation of the LDAP protocol, running on a UNIX workstation in our lab.
Rather than storing the model objects in the LDAP service, we chose to store only
attributes of the component. This reduces the need to store and transfer large objects
from the LDAP, and allo\vs models to be located by searching for ke_ywords
corresponding to certain attributes. For example, for each model component, we define
the class name, the model author, model creation and expiration date, and the LRL of
the model code, to name a few. When a component is selected from the LDAP, the Java
byte-codes are downloaded from the Web server defined by the component’s LRL
attribute. On the client machine, the byte-codes are dynamically loaded and used to
create an instance of the model.

For security purposes, the Component Browser requires users to authenticate
themselves before they can retrieve any information from a naming or directory service.
Once authentication has been successfully completed, the user can browse or search
(using attribute keywords) the entire namespace (subject to any authorization
restrictions). Authentication and authorization capabilities are provided through JNDI
and the Java Authentication and Authorization Service UAAS) framework. These tools
allow the Component Browser to remain independent from the underlying security

NAG-1-2244 1st Year Report 6 October 30, 2000

services, which is an important concern when working in a heterogeneous computing
environment such as the Web.

Access and utilization of both Web-based and remote legacy models ha\.e been tested
successfully using the Denali CSF. Component models for the EEE gas [urbine engine
model were placed on a Web server (rnimel) located in our lab. Each component model,
with the exception of the Combustor, was defined as a Web-based model (i.e., written in
Java). For this test, a FORTRAN Combustor model, representing non-Java legacy codes,
was written, compiled and placed on a second machine (mime2). A Java ivrapper, acting
as a proxy for the Combustor model, was written, compiled and placed on the Web
server (mime 1). Deployment of each component also included registering component
attributes with the LDAP service running on a third machine (mime3). A Denali client,
operating on a fourth machine (mime4), was then used to access and construct the EEE
engine system model using the Denali Visual Assembly Framework, Lvhich is described
below.

Visual Assembly Framework
The Visual Assembly Frameic-ork (VAF) provides a configurable, extensible graphical
interface for constructing and editing Denali component and system models. Aerospace
component objects, placed on Web servers and registered in the LDAP service are
graphically manipulated in the VAF to create new models, or edit existing models. Icons,
representing individual engine components (i.e., Elements), are selected from the
Component Browser, dragged into a workspace window, and interconnected to form a
schematic diagram (see Fig. 2). Dragging an icon from the Component 3rowser to the
workspace window causes the selected software component to be doimloaded from the
Web server to the client machine. Components comprised entirely of Ja\.a classes are
downloaded from a Web server to the local file system where the byte-codes are
extracted from the JAR file, loaded into the Java Virtual Machine and insIantiated for use
in Denali. Components developed in other programming languages are not
downloaded, but remain on the server. Instead, the proxy object, representing the
component, is downloaded and used to connect to the remote component using the Java
Remote Method Invocation (RMI) substrate.

Denali supports the creation of hierarchical component models, and an icon can
represent both a single component or an assembly of components. A component with
subcomponents is called a composite or structured component. Components that are not
structured are called primitive components, since they are typically defined in terms of
primitives such as variables and equations. Composite components are represented by a
CompositeElement class, which is part of the Element hierarchy. The class structure,
based on the Composite design pattern, effectively captures the part-ivhole hierarchical
structure of the component models, and allows the uniform treatment of both individual
objects and compositions of objects. Such treatment is essential for pro\-iding the object
interoperability needed to perform Web-based model construction by composition.

NAG-1-2244 1st Year Report 7 October 30,2000

Figure 2 shows a composite model representing an aircraft turbofan engine. The icon
labeled Core is a composite of components which are displayed in the lower schematic.
Each icon has one or more small boxes on its perimeter to represent its Ports. Connecting
lines are drawn between the ports on different icons by dragging the mouse. A
Connector object having the correct Transform object needed to connect the two ports is
created automatically by Denali. Each icon has a popup menu which can be used
“customize” the attributes of its Element, Port and DomainModel objects. LVhen
selected, a graphical Customizer object is displayed (see upper-right corner of Fig. 2),
which can be used to view or edit the selected objects attributes. The visual assembly
interface also provides tools for plotting (see the lower-left corner of Fig. 2), editing files,
and browsing on-line documentation.

Using the VAF interface, the EEE component models were successfully downloaded
from the Web server (mimel),and combined graphically to form an EEE engine model in
the VAF. A Newton-Raphson numerical execution scheme (provided as parr of the
Denali system) was used to solve the system of equations and simulate both steady and
unsteady engine operation. Results of the tests were validated against other exis[ing
FORTRAN gas turbine engine simulation programs.

Currently the VAF interface is implemented as a Java application rather than a Java
applet. This was done for two reasons: 1) Java applications are easier to develop [han
applets, since they do not require explicit security controls (i.e., signing) : and. 2) browser
technology needed to run applets is not up-to-date. Also, a new product. called Java Web
Start is now available (in beta form) which allows users to download Java applicarions
which run on the desktop, in much the same manner as applets, but do not require a
Web browser. We are currently experimenting with the Java Web Start to evaluate its use
with Denali.

Publications Resulting from Work Supported by This Grant
[l] Reed, J. A., Follen, G. J., and Afjeh, A. A., “Improving the aircraft design process

using Web-based modeling and simulation, “ ACM Transactions on Modeling and
Computer Simulation, Vol. 10, No. 1,2000, pp. 58-83, (special issue on Web-based
Modeling and Simulation).

Plans for Year 2

Common Model Framework
The majority of work in year 2 will focus on the addition of geometry data to models.
Specifically, we plan to work on providing direct access to CAD native geometry
data. Our plan is to use a middleware layer being developed at MIT to alloiv us to
access a variety of CAD packages using a common API. Access to CAD geometry
will allow us to enhance our visualization capabilities.

NAG-1-2244 1st Year Report 8 October 30, 2000

We plan to test integration of several database management systems with Denali.
This had been slated for yr. 1, but was postponed until yr. 2 to more fully explore the
use of new approaches to saving models, such as using XML.

We also plan to obtain existing airframe models for study. These will be integrated
within the Denali simulation system in year 3.

Connection Services Frame work
We will continue to improve non-mobile code services. Specifically, we are working
on developing generalized specifications for wrapping legacy codes common in the
aerospace domain. These include CFD and FEA tools, as well as numerical solvers
and optimizers.

Visual Assembly Framework
We will work on integration of CFD and geometry visualization. We will examine the
possibility of integrating an existing visualization tool, or creating a new Java-based
visualization tool to display geometry and flow data.

We \vi11 continue to enhance and refine our VAF design to make it more intuitive and
easier to use. We hope to provide a beta version of the Denali system to users at
aerospace companies and NASA centers for evaluation. Feedback from these beta
testers will be used to enhance the Denali VAF (and other parts of Denali).

NAG-1-2244 1st Year Report 9 October 30, 2000

.I I I--- I I

Stator lng le ‘3eg)
0 0 -_ - __

-3 0 - ,.
-6 0 -
-9 0 - /

-120. I

-15 0 - /’
-18 0 -
-21 0 .
-24 0 ,’

/

,
0 0 1 0 2 0

0 0 , - 2 4 9 9
1 3 -2499
20, - 1 7004 I lime (seconds) 2 00

Transient Value - 1 7004

--_-A Reset Add Point I

Figure 2: Denali Visual Assembly interface showing integration of engine model.

October 30.2000 NAG-1-2244 1st Year Report 10

A second year progress report on:

Development of a Dynamically Configurable,
Object-Oriented Framework for Distributed,
Multi-modal Computational Aerospace
Systems Simulation

Abdollah A. Afjeh, Ph.D.
John A. Reed, Ph.D.

Department of Mechanical, Industrial and Manufacturing Engineering
The University of Toledo

September 7,2001

Summary
This report describes the progress made in the second year (Sept. 1,2000 to Aug. 31,2001) of work at The
University of Toledo under the NASA Information Technology (IT) Program grant number NAG-1-2244.
This research is aimed at developing a new and advanced simulation framework that will significantly
improve the overall efficiency of aerospace systems design and development. This objective will be
accomplished through an innovative integration of object-oriented and Web-based technologies with both
new and proven simulation methodologies. The basic approach involves three major areas of research:

Aerospace system and component representation using a hierarchical object-oriented component
model which enables the use of multimodels and enforces component interoperability.

Collaborative software environment that streamlines the process of developing, sharing and
integrating aerospace design and analysis models.

Development of a distributed infrastructure which enables Web-based exchange of models to simplify
the collaborative design process, and to support computationally intensive aerospace design and
analysis processes.

Research for the second year focused on enabling models developed in the Dennli software environment to
directly access CAD native geometry. Access to CAD geometry is essential to generate mesh for use in
fluid and structural analysis of aerospace systems, as well as visualization of analysis results. Furthermore,
a geometry-centric modeling approach, as employed in this work, simplifies use of these and other tools in a
multidisciplinary design process. Finally, direct access to CAD native geometry, compared to geometry
described in intermediate forms (e.g., IGES['I* STEP[*], STL13], etc.), is more robust.

NAG-1-2244 2nd Year Report 1 September 7,2001

Year 2 Accomplishments

CAD

In trod iiction
Computational simulation plays an essential role in the aerospace design process. Computer-aided design
(CAD) methods are the basic tool for definition and control of the configuration, ard CAD solid modeling
capabilities enable designers to create virtual mockups of system to verify that no .nterferences exist in
part layouts. Similarly, structural analysis is almost entirely performed using con;xtational tools
employing finite element methods. Computational simulation is also employed :c model fluid dynamics.
However, computation fluid dynamic (CFD) tools are not as widely applied in the zesign process as either
CAD or structural analysis tools due, in part, to the long set-up times and high COS:^ (both human and
computational) associated with complex fluid flow.[']

' * Meshing + Solving I + Iisualization

The conventional steps for CFD, structural analysis, and other disciplines in the design process are: 1)
surface generation, 2) mesh generation, 3) obtaining a solution, and 4) post-processing visualization.
Surfaces of the domain to be analyzed (e.g., a turbine blade passage) are generated from a CAD system.
These surfaces are used to create a domain (i.e., a closed volume) of interest which is discretized in one of
many different manners to form a mesh. The mesh, along with boundary informZ?on, is used by a
numerical solver to obtain a solution to the governing equations over the entire 1-c:ilme. This solution and
mesh are then displayed graphically, allowing the user to examine the results ani: 2xtract the data needed
to understand the domain physics. This process is illustrated in Fig. 1. Data are trznsmitted between these
steps via files; for example, output from a CAD system might be in the form of I G E file(s), which are read
by the mesh generator. Similarly, the mesh generator, solvers and visualization took would each generate
output and read input in a variev of formats.

Mesh generation has long been recognized as a bottleneck in the CFD process.['; :?lule much research on
automating the volume mesh generation process have been relatively successful. r5ese methods rely on
appropriate initial surface triangulation to work properly. Surface discretization ;7'j been one of the least
automated steps in computational simulation due to its dependence on implicitl:: iefined CAD surfaces
and curves. Differences in CAD peometry engines manifest themselves in discrerzcies in their
interpretation of the same entities. This lack of "good" geometry causes signific2.r.r ?roblems for mesh
generators, requiring users to "repair" the CAD geometry before mesh generatior.. The problem is
exacerbated when CAD geomem is translated to other forms (e.g., IGES which La not include important
topological and construction information in addition to entity geometry. t61

One technique to avoid these problems is to access the CAD geometry directly frcm the mesh generating
software, rather than through files. By accessing the geometry model (not a discrefzed version) in its
native environment, t h s a proach avoids translation to a format which can deplere the model of
topological information. [6 f

Our approach to enable models developed in the Denali software environment to iirectly access CAD
geometry and functions is through an Application Programming Interface (API) h o w n as CAPRI.171
CAPRI provides a layer of indirection through which CAD-specific data may be accessed by an
application program using CAD-system neutral C and FORTRAN language funceon calls. CAPRI
supports a general set of CAD operations such as truth testing, geometry construction and entity queries.

- - - - Data transfer via files

Figure 1: Conventional Analysis Process (Ref. [7])

NAG-1-2244 2nd Year Report 2 September 7,2001

CAD
L

Figure 2: CAPRI-based Analysis Process (Ref. [7])

Meshing w Solving Visualization

CAPRI isolates the top level applications (mesh generators, solvers, and visualization programs) from the
geometry engine (see Fig. 2) . It also allows the replacement of one geometry kernel with another, without
affecting the top-level application. Additionally, CAPRI allows non-geometry information, such as
material or condition information (e.g., temperature) to be attached to the geometry entities.

i A
I

CAPRI API
4
7
I - Geo. Kernel t * Geo. Database

A geometry-centric approach, such as the one supported by CAPRI, is vital to foster concurrent
engineering, especially in multidisciplinary aerospace design. This approach allows requisi:? information,
both geometric and non-geometric, to be captured and used in the design process. For exam?le, a CFD
solver, using the supplied mesh, would generate a solution consisting of fluid properties (e.g.,
temperature, pressure, etc.) for each volume. Ths data is attached to appropriate mesh vol.;nes through
CAPRI, and accessed by other applications through context-specific views of the CAPRI data. For example,
a CFD visualization application program would obtain the geometry directly (through CAPRI) from the
CAD geometry kernel while the CFD data would be supplied from CAPRI attachments.

Implementation Details: Overviezo
We have designed and implemented a basic object-oriented architecture to allow both Der.2-i models and
external application programs to access geometry data through the CAPRI API. Figure 3 ii:,strates a
simplified view of the architecture participants. The designer directs the Client, which is eiri.,er a Denali
model or external application program, to generate a mesh for a specific CAD part. The MeshGenerator is
responsible for generating an appropriate mesh given a CAD part, and is done in conjuncEcn with the
CAPRI middleware and a CAD geometry kernel (such as UniGraphics Parasolid). The generated mesh is
returned to the Client and passed to the Analysis Controller (it may also be viewed at this !me by a
visualization tool). The Analysis Controller uses the mesh to perform an engineering analJ-sis, such as
CFD. At the end of each time-step or the end of the analysis, CFD data is attached to geomerry via calls to
CAPRI. The mesh, attached CFD information, and geometry boundary surfaces data are retrieved by a
Visualizer which displays the simulation results to the designer.

Mesh Generation
A general class structure has been developed to frame the mesh generation process using C.\PRI (see Fig.
4). The MeshGeneratorMgr class provides a single access point (implemented as a Singleton object) for
clients to obtain a mesh from a CAD part. There are many different techniques for generating a mesh, so
Denali allows users to specify a particular mesh generation technique as implemented by a lava class.
These different classes can be dynamically plugged into the Denali framework so long as they subclass the
abstract MeshGenerator class. In Fig. 4, the MeshGenerator class has been subclassed by the
DenaliMeshGenerator class, which defines concrete implementations of MeshGenerator abstract methods
(indicated by italics). MeshGenerator subclass’ can use whatever means they wish to generate a mesh; this
allows the use of existing IGES- and STEP-based tools. In our research we have written a simple Java mesh

NAG-1-2244 2nd Year Report 3 September 7,2001

Client Mesh Generator
initiate _ - - - _

1 1.'

MeshGeneratorMgr

generator

setGenerator ()

getGenerator (1

A
designer

MeshGenera t o r

mesh

se tMesh ()

ge tMesh I)
genera teMesh (I

i

DenaliMeshGenerator -

/ - -7 * - - .

Capri

transfer mesh I
/ transfer mesh I

initiate

- - _ _ _ - - transfer solution - - _ _ _ - -
Analysis Controller Visualizer

Figure 3: Global view of architecture

generator based on constrained Delaunay triangulation. The generator, which is implemented in the
DenaliMeshGenerator class, utilizes CAPRI to access native CAD geometry and generate a mesh. The
Capri class is a Java wrapper which duplicates the CAPRI API function call list and accesses the CAPRI
C-language function calls through the Java Native Interface (JNI).

Using CAPRI, the DenaiMeshGenerator loads a CAD part, then retrieves a list of volumes from CAPRI.
For each volume, CAPRI returns a simplical decomposition of each of the CAD face entities. Each of these
triangulations are manifold with respect to their CAD edges. Typically, the triangulation is irregular and
planar regions are decomposed into as few triangles as possible. A new mesh with higher quality is
constructed by creating additional triangles using points on CAD faces obtained from CAPRI.

Since it was not our intent to write a robust and guaranteed-quality mesh generation tool, lve developed
the Delaunay triangulation mesh generator only to the point to demonstrate access to geometrl; through
CAPRI. In the future, we may choose to continue this work and improve upon it using the work ot'
Ruppert['I, Chew["] and Aftosmis.["].

NAG-1-2244 2nd Year Report

setMeshl)
getMesh ()

generateMesh ()

Figure 4: Mesh generation class structure

4

uStart t)
uLoadParz ()

dGetVolune ()
qPointOnFace ()

September 7,2001

Visirdization
As indicated above, visualization tools are essential to view solver solutions overlaid on geometry and
mesh data. One visualization tool, called the Gcornctry Viezorr, is a stand-alone visual interface and
debugging aid provided with CAPRI. It is similar to the Visual3 program[”] used for scientific
visualization, but is limited to viewing meshes and geometry. We have loosely integrated the Geometry
Viewer withn the Denali framework so as to demonstrate the ability to visualize geometry and mesh
using the CAPRI library.

One of the goals of the Denali framework was to provide a platform-independent system for aerospace
design. Towards that end we have endeavored to use JavaTh’ as much as possible in developing the
framework. However, in some cases, no Java-based tool were available; this is currently the case with
visualization tools. It is sometimes possible to partition the non-Java software into a client-server
architecture with the non-Java software located on a centralized machine made accessible via RMI or
CORBX. However, it appears that this is not currently possible with existing visualization tools.
Consequently we are exploring the possibility of developing a visualization tool similar to Visital3 or the
Geometry Viewer using Java, and in particular, the Java3D
users to install platform-specific visualization tools on each desktop using Denali in order to view
geometry and/or simulation solutions.

Alternatively, we will have to require

Plans for Year 3
The majority of work in year 3 will focus on the development of aircraft models for use in Denali. In
anticipation of the year 3 work, we have licensed the Base of Aircraft Data (BADA) from the
Eurocontrol Experimental Centre (EEC). The Base of Aircraft Data (BADA) provides a set of ASCII
files containing performance and operating procedure coefficients for 186 different aircraft types. The
coefficients include those used to calculate thrust, drag and fuel flow and those used to specify
nominal cruise, climb and descent speeds.
We will continue to work on implementing a database management system based on the Java Data
Objects (JDO) specification.[’] The final JDO specification is expected to be released soon, and we will
be evaluating different implementations of the specification to see which is best for supporting Denali.
We will also be working on integrating more robust grid generator and visualization tools which
utilize the CAPRI interface.

References
REED, K., 1991, ”The Initial Graphics Exchange Specification (IGES) Version 5.1.”
STEP, 1994, “Industrial automation systems and integration - Product data representation and
exchange -- Part 1: Overview and fundamental principles,” ISO/TR 10303-1. International Standards
Org. Geneve, Switzerland.
STL, 1988, Stereolithography Interface Format Specification, 3D Systems, Inc.
JAMESON, A., 1999, “Reengineering the Design Process Through Computation,” I. Aircraft,

COSNER, R., 1994, “Issues in aerospace application of CFD analysis,” AIAA Paper No. 94-0464.
AFTOSMIS, M.J., DELANAYAE, M., AND HAIMES, R., 1999, “Automatic Generation of CFD-Ready
Surface Triangulations from CAD Geometry,” AIAA Paper No. 99-0776.
HAIMES, R. AND FOLLEN, G., 1998, “Computational Analysis PRogramming Interface,” Proc. of the 6th
ltiternational Conference on Numerical Grid Generation in Computational Sitnillation Fields, Eds. Cross,
Eiseman, Hauser, Soni and Thompson.
JAVA DATA OBJECTS, “JSR 12: Java Data Objects (JDO) Specification,” http:/ /jcp.org/jsr/detail/
012.jsp
RUPPERT, J. 1995, “A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation,”
J. Algorithms, vol. 18, no. 3, pp. 548-585.

V O ~ . 36, pp. 36-50.

NAG-1-2244 2nd Year Report 5 September 7,2001

[lo]

[ll]

[12]

[13]

CHEW, L. P., 1993, ”Guaranteed-quality mesh generation for curved surfaces,” Proc. of the Ninth
Annual Symposium on Computational Geometry, pp. 274-280, ACM.
AFTOSMIS, M.J., 1999, “On the Use of CAD-Native Predicates and Geometry in Surface Meshing,”

HAIMES, R., 1991, “Visual3: Interactive Unsteady Unstructured 3D Visualization,” AIAA Paper No.

SOWIZRAL, H., RUSHFORTH, K., AND DEERING, M., 2000, The Java 3DTM API Specification, Second
Edition, Addison Wesley Longman, Inc. ISBN: 0-201-71041-2

NASA TM-1999-208782.

91-0794.

NAG-1-2244 2nd Year Report 6 September 7,2001

APPENDIX B: Publications

Conference Publications

1. Lin, Risheng and Afjeh, A. A., “An Extensible, Interchangeable and Sharable
Database Model for Improving Multidisciplinary Aircraft Design,” AlAA 2002- 561 3,
9th AIANISSMO Symposium on Multidisciplinary Analysis and Optimization, 4 - 6
September 2002, Atlanta, Georgia.

2. Lin, Risheng and Afjeh, A. A., “Interactive, Secure Web-enabled Aircraft Engine
Simulation Using XML Databinding Integration,” AlAA 2002- 4058, 38th
AIANASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 7 - 10 July 2002,
Indianapolis, Indiana.

Journal Articles

3. Reed, J. A., Follen, G. J., and Afjeh, A. A., “Improving the aircraft design process
using Web-based modeling and simulation, “ACM Transactions on Modeling and
Computer Simulation, Vol. 10, No. 1,2000, pp. 58-83, (special issue on Web-based
Modeling and Simulation).

4. Lin, Risheng and Afjeh, A. A., “On XML-based Integrated Database Model for
Multidisciplinary Aircraft Design,” AlAA Journal of Aerospace Computing, Information,
and Communication, To appear in 2004.

A I M 2002- 5613

An Extensible, Interchangeable and
Sharable Database Model for Improving
Multidisciplinary Aircraft Design
Risheng Lin and Abdollah A. Afjeh
The University of Toledo
Toledo, Ohio

9th AlAAllSSMO Symposium on Multidisciplinary Analysis and Optimization
4 - 6 September 2002

Atlanta, Georgia

For permission to copy or to republish, contact the copyright owner named on the first page.
For AIM-held copyright, write to A I M Permissiorts Department,

1801 Alexander Bell Drive, Suite 500, Reston, VA, 201914344.

A1.A 1-2002-5613

AN EXTENSIBLE, INTERCHANGEABLE AND SHARABLE D-ATABASE
MODEL FOR IMPROVI3G MULTIDISCIPLINARY AIRCRAFT DESIGN

Risheng Lin' and Xbdollah A. Afjeh'
The University of Toledo
2801 West Bancroft Street
Toledo, Ohio 43606. USA

ABSTRACT

Advances in computer capacity and speed together with
increasing demands on efficiency of aircraft design
process have intensified the use of simulation-based
analysis tools to explore design alternatives both at the
component and system levels. High fidelity engineering
simulation, typically needed for aircraft design, will
require extensive computational resources and database
support for the purposes of design optimization as many
disciplines are necessarily involved. Even relatively
simplified models require exchange of large amounts of
data among various disciplinary analyses. Crucial to an
efficient aircraft simulation-based design therefore is a
robust data modeling methodology for both recording
the information and providing data transfer readily and
reliably. To meet this goal, data modeling issues
involved in the aircraft multidisciplinary design are first
analyzed in this study. Next, an XML-based. extensible
data object model for multidisciplinary aircraft design
is constructed and implemented. The implementation of
the model through aircraft databinding allows the
design applications to access and manipulate any
disciplinary data with a lightweight and easy-to-use
API. In addition, language independent representation
of aircraft disciplinary data in the model fosters
interoperability amongst heterogeneous systems thereby
facilitating data sharing and exchange between various
design tools and systems.

INTRODUCTION

Improvement in aircraft design involves research
into many distinct disciplines: aerodynamics, structures.
propulsion, noise, controls, and others. Due to the
inherent complexity and coupling of the disciplinary
design issues, simulation-based analyses of aircraft
design will naturally evolve to complex assemblies of
dynamically interacting disciplines where each of the

* Rcsearch Associate, Student Member AIAA. Dcpanment of Mcchanicai.
Industrial and Manufacturing Engincering. E-mail: rlin Scng.utolcdo.cdu
+ Profcssor and Chair, Department of Mechanical. Industrial and
Manufacturing Engineering. Member AIAA. E-mail: aaijeh~.cng.utoledo.cdu
Copyright ? 2007 by Risheng Lin. Published by the Amencan Institute of
Acronautics and Astronautics, Inc.. with permission.

disciplines interacts to various degrees x i th the other
disciplines (Figurel). The multidisciplinary couplings
inherent in aircraft design not snly increase
computational burden but also piesent additional
challenges beyond those encountertd in a single-
disciplinary simulation of aircraft. The increased
computational burden simply reflects :it massive size
of the problem, with enormous amounts zfanalysis data
and design variables adding up with :ach additional
discipline. As a result, designing and xplementing a
new simulation methodology that jupports the
multidisciplinary aircraft design prostjj can be an
impractically expensive and timc-:r,vnsive task.
Currently reasonably well-developed and validated
software tools exist within ind iv icd disciplines.
Hence, a key requirement for the S U C C ' t - j of a practical
multidisciplinary aircraft simulation is :a provide the
tools necessary to support efficient im=nt ion of these
computer simulation codes. This appr,-:sh demands a
well-constructed data sharing xi validation
environment, which includes a robusr iata modeling
andlor the use of a data exchange standz-d.

...I Geometry 1.

Materials

Acoustics

Figurel. Typical disciplines in an xcraf t design

Traditional preliminary design 7rscedures often
decompose the aircraft into isolated components (wing,
fuselage, engine, etc.) and focus ancntion on the
individual disciplines (geometry. propulsion, acoustics,
etc.). The common approach is to perform disciplinary
analysis in a sequential manner Lvhert one discipline
may synthesize the results of the preceding analysis

1
American Institute of Aeronautics and Astronautics

during the simulation run-time. The current practice
emphasizes the multidisciplinary nature of the design of
an aircraft through the use of integrated product teams.
However, integrated and sharable aircraft design
databases arc not yet common in industry. One reason
for this is because aircraft system simulation typically
requires complex numerical algorithms and coupling
models between dominant disciplines. Accordingly,
developers can barely afford to build propriety data
storage models around successful design applications.
With the distinction, each discipline focuses on
activities related to its own concerns. The designers
typically provide each discipline with only those data
which are required in performing the specific task of
that discipline, and often, they spend 5040% of their
time organizing data and moving it between
applications [I] . A very common problem with this
kind of data exchange is data consistency. It is not
uncommon to find that during the design phase, a
particular discipline’s updated calculations have not
been effectively communicated with other disciplines
involved in the design effort. This breakdown in the
data exchange process results in inconsistent
predictions among the various disciplines and could
cause, for example, an “optimal” aerodynamic design
that can not contain a sufficient supportive structure.

Other factors that can make the design process less
efficient are data redundancy and the lack of a standard
data format. To synthesize and evaluate aircraft designs,
numerous software packages for analysis, post
processing or data visualization are often employed.
Because the aircraft simulation computing
environments are typically heterogeneous, with
platforms ranging from personal computers to UNIX
workstations, to supercomputers, their internal data
representations are normally not the same, these tools in
general use different, possibly proprietary, data formats.
Moreover, data are often duplicated in a slightly
different format for the various disciplines’ use. This
lack of portability of data in different file systems
greatly hinders sharing and exchanging of
interdisciplinary data. In addition, the multiplicity of
representation of disciplinary datasets not only wastes
storage media capacity and CPU time, but it also
generates an enormous overhead in terms of data
translator development, additional software and data
management. Although in some cases, custom
translation tools are available to “massage” the data into
the appropriate format; users still spend considerable
time and effort tracking and validating data. As the
analysis and design tasks become more distributed,
communications requirements become more severe.
Advances in aircraft disciplinary analyses and the
growing trend in the use of high fidelity models in the
last two decades have only aggravated these problems,
increasing the amount of shared information and

outpacing developments in interdisciplinary
communications and system design methods [2] .

Improving the stmulation-based aircraft design
process. therefore, requires the development of an
integrated software environment which can provide
interoperability standards so that information can flow
seamlessly across heterogeneous machines. computing
platforms, programming languages. and data and
process representations [3]. In particular, emphasis
should be placed on the generation of a database
management system specifically crafted to facilitate
multidisciplinary aircraft design. The subject of this
paper is to provide a sharable and interchangeable
database model for multidisciplinary aircraft design,
with the intent to promote the interdisciplinary
information sharing.

DESIGN REOUIREMESTS

The Multidisciplinary Optimization Branch
(MDOB) at NASA Langley Research Cmter (LaRC)
recently investigated frameworks for supporting
multidisciplinary analysis and optimization research.
The major goals of this program were to develop the
interactions among disciplines and promote sharing of
information. This section outlines several design
requirements related to the data modeling that are
particularly evident in the aircraft multidisciplinary
analysis and optimization. based on the experience
gained from the Framework for Multidisciplinary
Design Optimization (MDO) project [-l.i].

Standards. Use of standards in a database model
preserves investment, results in lower maintenance
costs and also promotes information sharing. It
ensures that there are no interoperability problems
between design teams that use the open standard.
Sharable. Data must be shared benveen disciplines
and within disciplines with all the applicable
quality, consistency and integrity checks [11.
Information sharing can reduce discipline isolation
and encourage the use of the most advanced
techniques while increasing the awareness of the
effects each discipline has upon other disciplines
and for reduced design cycle time [6] .
High-level interface. Database model should allow
the user to use and modify aircraft data in complex
MDO problem formulations easily without low-
level programming. By raising the level of
abstraction at which the user programs the MDO
problems, they could be constructed faster and be
less prone to error.
Extensible. Advances in aircraft design will have
new disciplines to appear, such as maintainability,
productivity, etc., therefore database model should

2
American Institute of Aeronautics and Astronautics

be extensible and should provide support for
developing the interfaces required to integrate new
disciplinary information into the system easily. . is
a result, the user a.ould svoid having to wait for the
needed features to appear in new releases.
Lurge data size. Since aircraft design involves a lot
of disciplinary analysis variables, database model
should be able to handle large problem sizes.
Supporting techniques should allow database to
grow and shrink dynamically, but do not degrade
the database performance dramatically.
Object-oriented. Database model should be
designed using object-oriented principles. Object-
oriented design [7] has several advantages in
aircraft design. For example, object-oriented
principles provide polvmorphisrn for analysis or
optimization methods at run time. Object-oriented
software design has been employed as a tool in
providing a flexible. extensible, and robust
multidisciplinary toolkit that establishes the
protocol for interfacing optimization with
computationally-intensive simulations [8].
Distributed. For large problems, the designers in
different disciplinary teams need to be able to
conveniently work together by collaborative design
[9]. It is desirable that a database model could
support disciplinary code execution distributed
across a network of heterogeneous computers.

The implementation of a database to meet all these
requirements is a major challenge. In the following
sections. we focus on the design and development of a
XML-based database model as a first step toward
meeting that challenge.

XML FOR AIRCRAFT DATA

XML [I O] is a generic. robust syntax for developing
specialized markup language. which adds identifiers, or
tags, to certain data so that they may be recognized and
acted upon during future processing. Several good
features inherent within XML would make it well
suited to the task for satiseing multidisciplinary data
requirements.

As indicated in the Design Requirements section,
data sharing is an essential element in preventing design
isolation between various aircraft disciplinary
components. XML provides a hierarchical container
that is platform-, language-. and vendor-independent
and separates the content from any environment that
may process it. It is normatively tied to an existing IS0
standard, IS0 8879 (SGMLI [1 I], and is an acceptable
candidate for full use within other IS0 standards
without the need for further standardization effort. By
accepting and sending aircraft data in plain text format,

the requirement to hai.e a standard binary encoding or
storage format is eliminated, allowing aircraft
applications running on disparate platforms to readily
communicate with each other. Aircraft design
applications written in any other programming language
that process XML can be reused on any tier in a multi-
tiered client/server environment or distributed
computing, offering an added level of reuse for aircraft
data. The same cannot be said of any previous platform-
specific binary executables. Because XML is or will be
fully supported in Web browsers, it should be possible
to use Web technology to communicate disciplinary
data entities in a collaborative aircraft design
environment.

When using XML. it not only allows input of the
data, but also permits one to define the structural
relationships that exist inside the data. The hierarchical
structure in XML combined with its linking capabilities
[l?, 131 can encode s wide variety of aircraft data
structures. The element's name. attributes and content
model are closely related to data class name, properties
and composition associations in object-oriented aircraft
simulation. By using XML to represent aircraft data, it
is possible to faithfully model any structural aircraft
data of a chosen component in their design context.

In traditional aircraft multidisciplinary analyses,
validating data format and ensuring content correctness
is another major hurdles in achieving data exchanges of
aircraft data. XML also provides facilities for the
syntactic validation of documents against formal rules.
This can be achieved through Document Type
Declaration (DTD) [I O] or XML-Schema [14], which
defines the constraints and logical structures that an
XML document should be constructed. A data file
written in XML is considered valid when it follows the
constraints that the DTD or XML-Schema lays out for
the structures of XML data. XML Schema also offers a
number of other significant advantages over DTD, such
as more advanced data types and a very elaborate
content model. Without XML. any validation of aircraft
data has to be implemented at the expense of work by
application developers. When using XML to encode
aircraft design data, X4IL parser can be used readily to
check the validity and integrity of the aircraft data
stored in XML documents. This guarantees the data
producer and consumer exchange the aircraft design
data correctly.

The various ad\-antages outlined above present
compelling reasons to use XML for aircraft design data
representation. However. the solution is not as easy as it
might at first appear. IVhile XML is a useful technology,
it is, ultimately. simply serialization syntax. In
particular, just putting aircraft data into XML form does
not make it any more interchangeable than it was before,
because the recipient of the data must still have an
understanding of what the design-specific data are

3
American Institute of Aeronautics and Astronautics

inside XML file .semuntical(v in order to process them
correctly. Semantic interoperability is of vital
importance between different aircraft disciplines and
simulation components. as it enables them to agree on
how to use aircraft data and how to interpret application
data for different disciplinary designs. In addition. there
are still several other requirements (for example. large
datasets, object-oriented, high-level interface, etc.) to
meet in order to use XML to communicate aircraft
design data between disciplines efficiently.

In the next section. we will provide the design of an
extensible aircraft data object model. This model will
be used to interpret aircraft design data between design
disciplines, and sene as a foundation to implement a
XML-based aircraft database to meet all the design
requirements.

DAT.4 OBJECT MODEL

The aircraft design process [151 can be divided into
three phases: conc2pptual design, preliminary design,
and detailed design. Since aircraft design by its nature
is a very complicated process and involves vast
amounts of data, for the purposes of this paper, we will
only demonstrate the data model in the aircraft
conceptual design. Conceptual design involves the
exploration of alternate concepts for satisfying aircraft
design requirements. Trade-off studies between aircraft
conceptual designs are made with system synthesis
tools, which encompass most of aircraft components
and a broad range of disciplinary interactions.

In order to effectively represent aircraft design data
using XML, a set of data object structures was first
designed. Figure 2 shows an overall layout of a
simplified data model. The designed database model is
composed of aircraft components and other disciplinary
data objects (Fig. ’ai. The overall model is organized in
a strict hierarchical manner in accordance with the
XML topology. Each node in the data structure shown
here is represented as an Aircrafl Data Object (ADO).
These objects hold no complex design logic, but they
contain typed data and preserve the logical structure of
the model. The ADO model precisely defines the
intellectual content of aircraft-related data, including
the organizational structure supporting such data and
the conventions adopted to standardize the data
exchange process. The functional model identifies a
common process in order to ascertain what data are
required for a typical aircraft design process. Figure 2
also indicates (informally) what data, if any, are
encapsulated within tach node object.

Aircraft Components
An aircraft component (AC-Component) object can

be an engine, fuselage, landing gear, canard, horizontal

stabilizer, vertical rudder, or wing (Figure 2b). Every
component has a user-defined name and unique
Component Qpe. which characterizes the nature of its
usage. For practical purposes, a Component type is
characterized as a set of possible values, such as WING.
ENGINE. etc. There is a special data type. called object
identification tComponent-ID), whose value is the
unique identifiers of encapsulated objects to be
referenced in the aircraft design.

Each aircraft component itself may be made up of
physically distinguishable subcomponents or parts. For
example, an engine is made up of inlet, fan, compressor,
combustor, turbine and nozzle subcomponents.
Likewise, most landing gears have parts like wheel, tire,
brake assembly, etc. Every subcomponent is
represented by a data object, with member properties
and subtypes (not shown here for simplicity)
encapsulated in it. Each part is modeled as a component
member object and encapsulated as a child in
AC-Component. An important feature to note from
Figure 2b is the local inclusion of several disciplinary
data. Since each member object has its own materials
requirements (e.g., modulus of rigidity, fatigue strength.
etc), structure and loads characteristics (e.g., strain,
stress, displacement, etc), these disciplinary data are
naturally considered as parts of a member object. The
local inclusion of component disciplines prevents
design data isolation. and promotes data sharing and
exchange during the design process. Aircraft propulsion
system (not shown here) is considered as a member
type for the engine components. A more detailed
demonstration for aircraft propulsion model can be
found in Ref. [161.

Besides the hierarchical layer of the data objects
structure, the designed model also encourages the use
of data object abstraction, inheritance, and composition.
Returning to Figure 2b, we can see that each of the
specific aircraft components is patterned as an “is/u”
relationship with AC-Component. therefore each
specific component data model automatically inherits
all the data member proprieties and subtypes (materials,
structure and load) of its parent. In this sense,
AC-Component provides a data abstraction for all its
component children, allowing each single element to be
treated the same way as the assemblies of elements in
its internal data representation. For each specific
aircraft component data modeling, we can represent the
hierarchical structure of the data properties,
substructure and their disciplinary data using recursive
composition. For example, we can combine multiple
sets of rotor and stator blade data objects to form a fan
component data. This technique allows us to build
increasingly complex aircraft data Components out of
simple data object models. The designed database
model gives us a convenient way to construct and use
arbitrary complex aircraft data model and makes the

4
American Institute of Aeronautics and Astronautics

ADO MODEL A

4C COMPONENT

C CUPONENT-NAME
C SMPONENT-TYPE

m AC-COMPONENT

MATERIALS I V

m GLOBAL DISCIPLINES

.---TENSOR.STRENGTH
:2MPRESS_YIELD
-EUS LEY EL0
EeUIR_iROP.LMIT
3 4 A R - Y ELRSTREN
Z r C W - Y ELD.POINT
S&AR.bTL_STRENGTH
S T C-'A00
I.IOD-RG L X Y
=rTGU€_STRENGTH
3XROSON-RESIST
'?ACTURE_TOUGHNES
I9ESS. HTEN-COEFF
:?ACK_GROWTH.RATE
-3PERATURE
'-ERMAL.EXPAN.COEFF

(a) Top level children of ADO model

1
GEAR H . STABILIZER

TI.].
...

ENGINE COM Em
GEOMETRY ck

WEIGHT-TOTAL '%'
STRUCTURE-LOAD

EPS-X-STRAIN
EPSY-STRAIN
€PSI-STRAIN
F-X-FORCE
F-Y-FORCE
F-2-FORCE
M-X-MOMENT
M-Y-MOMENT
MI-MOMENT
THETA-X-ROTATION
THETA-Y-ROTATION
THETA_Z.ROTATION
U_X_DEFLECTION
U-Y-DEFLECTION
Y_Z_MFLECTION
S.X_SHEAR
S-Y-SHEAR
S-Z-SHEAR

(b) Aircraft components data object model

WEIGHT

MISSION.WGT

AERODYNAMICS

I 1 1 -

4 FUEL.SYS.WGT 3 1 I
(c) GlobalDisciplines data object model

Figure 2. Aircraft data object model

5
American Institute of Aeronautics and Astronautics

Lc__7 ROLL-PITCHJAW

model totally cxtcnsible for future enhanccments.

Geometrv Modeling
Component geometry modeling is somewhat

unique in aircraft design. All disciplines share the same
geometry. Strong interactions benveen the disciplines
are very common and complicated. For example. during
operation, the geometry of a flexible structure (e.g..
wing) may change due to the aeroelastic effects.
Geometry modeling must, therefore. be accurate and
suitable for various disciplines (e.g. deflection and
load). For a multidisciplinary optimization problem, the
application must also use a consistent parameterization
across all disciplines. Thus, an application requires a
common geometry dataset that can be manipulated and
shared among various disciplines [171.

STEP Application Protocol AP 203 -
Configuration Controlled 3D Designs of Mechanical
Parts and Assemblies [18] - is a set of standards that
defines the CAD geometry, topology. and configuration
management data of solid models for mechanical parts.
AP203 supports wireframe. surfaces, solids,
configuration management, and assemblies. The STEP
modelers have undertaken the very difficult job of
defining mappings between the different
representations of the same information. For example, a
curve on the surface of fuselage can be represented as a
B-spline, as a list of curve segments. or as NURBs. In
our aircraft database, a placeholder has been designed
to support various aircraft components’ geometry
disciplinary data that conform to the STEP-based
model. Because different components normally have
very different geometry requirements. the geometry
disciplinary data are considered local to every concrete
component. Different fidelity geometry models can be
chosen for use in the design process.

Global DisciDlines
Other disciplinary data, such as stability and

control, aerodynamic, performance. cost, and weight
data, are currently modeled as global objects (and
grouped together as GlobalDisciplines) of the aircraft
database (Figure 2c). This seems a little unnatural,
however, these calculations have been traditionally
grouped by discipline in aircraft design, and they
probably will continue to be associated in this manner
for some time to come. The relationship between these
disciplinary data and aircraft database is also modeled
as parent to child. For example. one of the relative
important design parameters on the conceptual vehicle
design is system performance. This disciplinary
category in our design is currently made up of different
criteria data objects, such as distance, speeds, limits,
measures, etc., as shown in Figure 9c. The figure also
gives the sampIe data that may be included in the
discipline. New data will be added in as the data object

model evolves in thc future.

SCHEMA DESIGS

Aircraft Schema establish25 a bridge between
XML-based description of a k a 3 data and the ADO
model. A set of aircraft Schemz has been designed in
XML Schema language thar specifies how the
constituents of the ADO objez are mapped to an
underlying XML structure. It associates each piece of
information defined in ADO to a ?recise location in the
XML structure.

Each aircraft data object 2efined in ADO is
mapped to one or more nodes. For the most part, the
aircraft Schema closely f 0 l l O t i - j the ADO model.
Aircraft-schema file must be ADO-compliant in order
for other applications to be abk ;o properly interpret
aircraft data. This is particularly nportant when trying
to transfer data between difzent disciplines and
different storage models. as the:: must be agreed-upon
data structure and syntax for iifferent systems to
understand each other. The rules in ADO model will
guarantee that the schema descr,srion of aircraft data is
syntactically correct and follows :he grammar defined
within it. An important feature of rhe ADO data model
is the hierarchical structure. w k c h allows the aircraft
data file to be structured as a roord directed graph, so it
is necessary to map the directed s a p h of aircraft data in
XML onto a tree of aircraft da:: objects specified ic
ADO. However, when a given 3:ece of information is
listed as being “under” a node. :here are actually two
possibilities: the information can be stored as data in
the current node, or it can be srored as data under a
separate child node. The aiicraft schema also
determines which of these two possibilities are best for
each situation.

An example of aircrafi schema design is
demonstrated in Figure 3. Based c7n the ADO model, an
aircraft database model incluics several kinds of
component data objects (such as b h g . Fuselage etc.),
which can be contained in an aircraft, and a
GobalDisciplines data object. To create aircraft
component constructs, we stan by creating a basic

type7 aircraft component complex
Aircraf tComponent-t, which contains a single
AircraftMember ekment. An .l.:rzraftMember iS

constrained by its complexType .l.:rzzaftMenber-t,
where AircraftMember-: irjelf contains Name
Totalweight, Materials, 2nd SzructureLoad
elements, and in turn, are constrained by their
corresponding built-in string ppe. double type and
similarly-defined complexTypes separately.

An aircraft component also contains a set of desired
data attributes - componentType. name. identification -
that are encapsulated in the AircrqfiCoinponent object.

6
American Institute of Aeronautics and Astronautics

c'k-i :yrc.or=' ' ;-">
<xsd.scherna ir:c?.:-es;a: ;='http://mernst ni.utoledo eduiaircraft'

1- -s='http.//rnemst ni.UtOied0 eddaircraft'
w . w 3 org12001/XMLScherna'

-='materials.xsd" .>
=%uctureload.xsd" >

<xsd.cornplexType -a~.d='AircraflComponent_t">
<xsd:sequence>

<xsd:element -aTa="AircraflMember' .:pe='AircraflMember_t"
laxCcc-ij='unbounded"is

</xsd:sequence>
<xsd:attributeGrouo ,4-"CornponentAttributes?s

</xsd:complexType>

<xsd:attnbuleGroup -3rE='ComponentAttnbules'>
<wsd.attribute -arre='cornponentType" ,se='requred">

<xsd:sirnpleType>

</xsd.simpleType>
</xsd:aflribute>
<xsd attribute -are='narne' -~e="xsd:stnng" 2j+="required'/s
<xsd.attribute -~r='idetificabon" 'ipe='xsd:ID' .se="required'!>

<ixsd:attributeGroup>

<xsd:complexType . -are=' AircraflMember -I">

<xsd:element -a-+StructureLoad' ':.:e="StNCtureLoad-t" 9
</xsd.sequence>
<rsd:attribute -arc='rnernberlD" '!,pe="xsd:ID".'>

</xsd:complexType>

<xsd:complexType -aw= 'Wingt">
<xsd:complexContent>

<xsd:extension ~.3s.="AircraflComponent_t">

<lxsd:extension>
<ixsd:cornpiexCon:en:>

<xsd:element ?rre='Aircraft'>

<!xsd.complexType>

<xsd:complexType>
< xsd:sequence>

s are ;ei,:ec -era ->
<xsd:element -a-.="GlobalDisciplines'

.I :;.="GlobalDisciplines_t'i>
<ixsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Figure 3. A sample aircraft schema

These attributes are grouped together, represented by
ComponentAttribures, and referenced by name in
the AircraftComponent's complexType declaration.
For example, the componentType attribute is restricted
to a set of predefined type values. such as WING,
LANDINGGEAR, etc, these types are constrained by
enumerations definition in the simpleType definition.

Then a set of concrete aircraft components is built
based on the AircraftComponent-t complexType.
The technique here is to derive new (complex) aircraft

componcnt types by extending an existing type. For
example, when building data schema for the wing
component. we define the content model for Wing
element using new complex types. :I:.?-:. in the usual
Lvay: in addition, we indicate that the concrete wing
component (Wing) is extending the
~ircraftcomponent-~ base type. When a complex
F p e is derived by extension, its effective content model
is the content model of the base type plus the content
model specified in the type derivation. In the case of
x i n g element, its content model 5~:r;-: is the content
model of AircrafiComponenf plus the declarations for
the wing's local data elements and attributes.

Other aircraft component and disciplinary data
schema can be designed in a similar manner. Finally,
the whole aircraft schema is composed of different
aircraft components and GlobalDisciplines data. Note
that when designing aircraft schema. all the basic
components and disciplinary schemas do not need to be
coded in a single file during the design time. For
example, Figure 3 does not explicitly show the
disciplinary schema such as material. stmcmre and load,
components other than wing, etc. instead. it uses
‘include' element to indicate that these schemas exist
outside the aircraft schema file. In this way, each
schema can be designed separately by different
disciplinary groups, and then "included" together
during the run time. This kind of flexible design will
allow for modular development and easy modification
of aircraft schema as its data object model evolves in
the future.

Because of the important nature of aircraft
geometry disciplinary data. our database model
currently uses STEP AP203 standard to encode all the
aircraft geometry data. STEP models are n-ritten using
the EXPRESS language [19]. EXPRESS provides a rich
collection of types and inheritance organizations to
capture data structure and to describe information
requirements and correctness conditions necessary for
meaningful data exchange, therefore makss it easier to
describe an accurate aircraft geometry model. However
EXPRESS does not dictate how the models should be
implemented using various database technologies.
Implementers must convert an EXPRESS information
model into schema definitions for the target database.
This conversion requires a mapping from the
EXPRESS language into the data model of the target
database system. EXPRESS information models
describe logical structures that must be mapped to a
software technology before they can be used.

Given an EXPRESS schema that specifies aircraft
geometry information, it is possible to define a set of
schema languages (such as DTD or XML-Schema) that
are used to encode geometry information specified in
EXPRESS schema. Several researches have been done
to encode EXPRESS schema by DTDs. among which

7
American Institute of Aeronautics and Astronautics

the most important one is STEP Part 18 (XML
representation of EXPRESS-driven data) [ZO], which
includes a set of standard DTD declarations to represent
any EXPRESS schemas in XML as well as data
corresponding to an EXPRESS schema. Therefore, it IS

convenient to take advantage of this standard to encode
all aircraft geometry data. This is done by designing a
STEP CAD Conventer, which can convert from a valid
aircraft geometry STEP model constrained by DTD to
XML-Schema. In this way, the general schema design
techniques provided in this section can still be applied
to aircraft geometry data. Moreover, by using XML-
Schema to represent STEP CAD model, it can benefit
the good features in XML-Schema, such as modular
schema inclusion (xinclude), and also offer a uniform
data schema formalism for database implementation. A
simple illustration is given in Figure 4.

<'-DTD for 3D point-->
<[ELEMENT Cartesian_po~nr EUPTY,
C'ATTLIST Canestan tom1

x-ad ID #REQUIRED
X CDATA :REQUIRED
Y CDATA #REQUIRED
2 CDATA $REQUIRED

>

<'-XMl Schema for 3D-point after convemon-->
cxsd:schema <,- - 5 <jz= h~p:/lwww.w3.org/200liXMLSchema >

<xsd:element -..-?='Cattesian30int">
<xsd:complexType>

<xsd:annbule " i - + X 'p='xsd:string 2ia='required''/>
<xsd:aflnbule -a-?= 2 ',.;e='xsd:string .s?='required":>
<xsd:aflnbute -'2-f= Y 'me= xsd:sb.ing ~a='required"'>
<xsd:aflnbute -?-e= x-id .)pe='xsd:ID .sd= required :>

<, xsd'compIex>fpe>
<:xsd:element>

<ixsd.schema>

Figure 4. Example STEP CAD Converter for 3D point

AIRCRAFT DATABINDING

Multidisciplinary design of aircraft systems is a
complex, computationally intensive process that
combines discipline analyses with intensive data
exchange and decision making. The decision making is
based on the overall design optimization but is greatly
assisted by data sharing and automation [SI. Aircraft
data encoded by XML provides a means to share
disciplinary data between aircraft design teams, but
their physical storage form on the external storage
medium is still not intelligible or easily accessible.
Aircraft databinding provides an implementation for
the designed data object model. Meanwhile, it also
encapsulates a convenient way for conversion between
the aircraft data in XML file and their object
representations automatically and provides a
lightweight and easy-to-use API, which facilities the
design applications to access, modify and store any
aircraft data object using a high-level object interface.

Aircraft Databinding includes tWo components: an
uircruji schema conipiler and a tnur.shul1ing /runiework.
I t was written in Java: thus the software can be run on
different design platforms.

Schema Compiler
The uircrujt .schemu compiler is designed to

automatically translate the aircraft schema into a set of
derived aircraft data class source codes. I t maps
instances of aircraft schemas into their data object
models, and then generates a set of classes and types to
represent those models (Figure 5)

0 STEP DTD Converter I
~ ___ ~~

Figure 5. Schema compiler in Aircraft databinding

Let's consider how the data class is generated by
schema compiler with input of the schema defined in
previous section. With the "Aircraft" schema defined,
attributes represent simple Java types. usually
primitives. Thus, name and componenr~~pe attributes in
the AircruftComponent's complexTye are compiled
into Java type of String, and idenrjficarion attribute
becomes Java primitive of type inr. respectively. All
elements (along with its type information which
specifies the content model), such as .4ircrajl,
Aircl-ajKomponent etc, become Java Classes. which
can then have class instance properties themselves,
again represented by attributes. In this way. a recursion
occurs: an element becomes a new class, and each
property of it is examined. If the property is an
attribute, a simple Java primitive member variable is
created for the object; if the property is element. a new
data object type is created, added as a member variable,
and the process begins again on the new object type,
until all classes are created. All other aircraft
components and disciplinary data can be similarly
created. A Unified Modeling Language (UML) diagram
for generated Java class (only wing component is
shown) is illustrated in Figure 6. The generated classes
also ensure that all the hierarchical data object structure
and their internal relationships are properly maintained.
For example, the figure shows that LVing is a subclass
that extends AircrajtCornponent, therefore. it inherits all
states and behaviors from its ancestor.

In addition, the generated classes provide methods

8
American Institute of Aeronautics and Astronautics

1

Figure 6. LTfL for Data class structure generated by aircraft databixding

to access and modify the properties defined in the
aircraft Schema. These methods closely follow the
JavaBean Design Pattern [21]. The main guideline for
the design pattern is that all publicly accessible fields
have proper getter (accessor) and setter (mutator)
methods. For a given field. a gener method is quite
simply a method that returns the value of that field,
while a setter method is one that allows us to set the
value of the field. Each method signature specifies the
name of the operation, Lvhich is sufficient for design
tools to obtain information about the fields of data
classes by examining the method Signatures of a given
class. This examination process is zalled Introspection.

For each aircraft data class that is automatically
generated (e.g. AircrafrComponent) , there is also
included a set of marshal. zrnniarshal and validate
methods, with their method signatures like:

p ~ b l i c boolean vali5ateO

F.Jb;ic AircraftConFone:: ur,rsrsha? (Reader reader)
F J b l l c vold marshal (iJz::tr c

The validate method is used to check whether the
aircraft data contained in XML file is valid. i.e.
conform to its corresponding data schema; marshal
and unmarshal methods can be used to map directly to
the data of elements and attributss within the XML
document and also affect the underlying aircraft data.
This is achieved through underlying Marshalling
Framework design.

Marshalling Framework
The marshalling frameLvork supports the

transportation (unmarshal) of aircraft data in XML files
into graphs of interrelated instances of aircraft objects

that are generated during <;:lema complier and also
converts (marshal) such grz??.s back into XML file. For
example, when XML-bas:: wing data is correctly
unmarshaled into aircraft JL..-L codes. the Wing node in
the XML file becomes ar, ::stance of the Wing class
that was generated by a i r z 5 Schema Compiler, i.e.
Wing Data Object. The a i r zx l design system can then
interfaces those objects. 2nd all interactions and
manipulations of aircraft 2:s;iplinary data in a design
system can be described as ::.vocations of operations on
those objects. In partiz2L.r. the aircraft design
application can use the corxqonding methods devised
with a set of mutator and ai';?sor methods to work with
the aircraft data in the urtkrlying design data file.
Therefore, it provides a comenient way to access and
modify the aircraft data n-tere all underlying files are
transparent to the user. The end result is aircraft data
binding.

Distributed Access
As the argument in ~.zr:?.a: is a general "writer"

object, it can be piped to a; wrapped into many other
different writers or streams. such as a network
connection, or another progrzm. This means marshaling
can be done remotely f r o r iircraft disciplinary design
team servers (Figure - 1 . The same applies to
unmarshaling process whe:: 3 general "Reader" is used.
A set of sample disciplinap drivers have been written
that use HTTP socket annection, Java Servlet,
CORBA, RMI technology 13 allow the databinding to
be called from different client working environments.
These discipline drivers can serve as a 'plug-in' for
aircraft disciplinary simulation codes and enables them
to use XML-based aircraft data easily and remotely.

9
American Institute of Aeronautics and Astronautics

Graphic Tree Vie\+

Figure 7. Design teams use Marshal Framework to access aircraft data remotely

According to the design requirements. more than one
discipline data may need to be called by a driver. The
interfaces between the discipline codes and their drivers
must be accurately specified in order to provide proper
communications. The disciplinary drivers can also
serve as templates or examples for more complex
problems.

Dvnamicallv Schema .Add-in
With advances in aircraft design process, there has

been an increased realization that new disciplines, such
as maintainability. productivity, etc., should be
addressed in order to optimize the aircraft design
process. Aircraft databinding also provides a service
that can dynamically add-in new aircraft disciplinary
schemas. These schernas can be either in XML-schema
format or in DTD format, but they must conform to a
set of newly designed disciplinary data object models.
STEPConverter is an example of this service that
provides a set of tools and libraries to read and w i t t
STEP Part28 compatible DTD file and to be used for
aircraft geometry modeling (Figure 5) . By using add-in
support to aircraft disciplinary schema, the databinding
code itself is kept generic and does not need any special
coding for a new problem.

Performance
Since XML description of aircraft data are by their

nature potentially large in size, in order to improve
aircraft database performance, the databinding
internally integrates another service, through XInclude
[121 and XLink [13]. that further allows users to split an
arbitrary large aircraft data file into a sequence of
sufficiently small subfiles during the marshalling
process, and resemble all these pieces together when
unmarshaling XML-based aircraft data to their data
objects. This kind of flexibility allows an aircraft data
file to span multiple physical files reside in different
computers by referencing as URI, and also make
possible a portion of one aircraft data file to be
referenced by several other aircraft tiles. The individual
files are more portable due to their reduced size, and
make use of less memory to represent the whole
necessary layered tree of the aircraft data nodes. In

addition. a Ziptrchiver is included in the aircraft
databinding, which will compress the aircraft data in
XML subfiles into different Zip entities in an aircraft
archive when transferring aircraft data objects to data
tiles. By using text compression algorithms, the XML
data file size can be much smaller than the original size
and even smaller in size than binary representation of
the same data. This reduces file I/O access times and
improves performance required for large aircraft
dataset.

CONCLUSION

In this work. a XML-based database model for use
in multidisciplinary aircraft design has been designed.
which meets design requirements of diverse disciplines.
The database consists of data object models, database
schemas. and data binding. .4ircraft Data Object (ADO)
model encompasses most of common components
involved in multidisciplinary aircraft design, as well as
various pertinent disciplines. such as aerodynamics,
structures, cost. materials, performance, stability and
control and weights. STEP AP203 standard is used to
describe each component’s geometry data. The ADO
model precisely defines the organizational structure
supporting aircraft design data and the conventions
adopted to standardize the data exchange. This is
particularly important when trying to transfer data
between different disciplines and different storage
models. as there must be agreed-upon data structure and
syntax for different systems to understand each other.

In order to store and validate XML-based aircraft
data, a set of database schemas was designed based on
ADO model. By using XML Schema to represent
aircraft Schema, a set of constraints establishes how
domain-specific data should be constructed, which can
then be used to further schema-validate the aircraft
data, ensuring that the contained data are valid. The
database schema follows a modular design pattern such
that it is extensible for future addition and/or
modification. By using and developing focused aircraft
disciplinary schema for specific aircraft component

10
American Institute of Aeronautics and Astronautics

object types, users can jenefit by an increase in
application reusability.

The aircraft databinding provides an object interface
to various aircraft disci?lines, allowing autotnated
storage and retrieval of XML-based aircraft design
results within and across iisciplines. Most o f the data
manipulation services are transparent to the aircraft
designer and simulation codes. This higher level
database development Lvith automation support
provides a common working environment, which would
enhance the productivity of multidisciplinary projects.

Since all disciplinary data in the binding process
are stored in XML documents, they bypass the
requirement to have a standard binary encoding or
storage format. Additionally, the language independent
representation of various aircraft component and
disciplinary data can f0jt:r interoperability amongst
heterogeneous systems, ar,d thereby greatly facilitates
the multidisciplinary aircraft design.

ACKNOWLEDGMENTS

The authors gratefully acknowledge partial financial
support from NASA Grant NAG-1-2244 under the
direction of Mr. Wayne K. Gerdes, NASA Langley
Research Center.

REFERENCE

Current State of the .Art on Multidisciplinary Design
Optimization, An A1X.A White Paper, September 1991.

Kroo. I., Altus. S. et 3:. "Multidisciplinary Optimization
Methods for Aircraft Treliminary Design", A1A.A 94-
4325, Fifth AIAAI LT.-1F/.VASA/OAI Svmposiirm on
Multidisciplinan Ano.>;sis and Optimization, Panama
City FL, September 1391.
Reed, J. A.. Follen. G. J. and Afjeh, A. A.. "Improving
the Aircraft Design Process using Web-based Modeling
and Simulation". ACJI Transactions on Modeling and
Computer Simulation. 1-01. 10, No. 1,2000. pp. 58-83
Ramki Krishnan, "E\ ahation of Frameworks for HSCT
Design and Optimization", NASNCR- 1998-20873 1.
October 1998
Salas, A.O. and Townsend. J. C. "Framework
Requirements for MDO Application Development." 7th
AIAA/USAF~~ASA/ISS.~lO Svmposium on .Cfulti-
disciplinary Analysis and Optimization. St. Louis.
Missouri. AIAA 98-1-40. September 2-4, I998
Jones, K.H. et al. "Inionnation Management for a Large
Multidisciplinary P:oject." AIAA-92-4720. +'Ih

AIAA/AF/NASA/OAI Srmposiirm on Miiltidisciplinay
Ana!vsis and Optimization, Independence, Ohio,
September 21-23. 1993.
Rumbaugh, J.. Blaha. SI.. Premerlani, W., Eddy, F., and
Lorensen, W., Object-Oriented Modeling and Design,

http:~/endo.sandiu.~o~ /AI.<: -41DOTC.~ponsorediorau~aper html

Prentice Hall. Englewood Cliffs. NJ. 1991.
Eldrcd. M., Hart. LV., c't al. "Ltiliring Object-Oriented
Design to Build ,lJ\anced Optimization Strategies with
Generic Implementation." Pruc. 6'" . . I I .~II /LS~F
~.\'..IS.4/lSS.CIO St.mpo.srzrm on .~~irltidi.sciplinrt~ .-l nulJ,sis
irnd Optimiztrrion. paper AIAA-96-4 161. 1996.
Monell. D. W. and Piland. W. M., "Aerospace Systems
Design in SXSA's Collaborative Engineering
Environment". 50th lnterntitionul ;Istronuiitical
Congress. Amsterdam. The Netherlands. October. 1999

[I O] Extensible Markup Language (XML) 1.0. W3C
Recommendation. Feb. 1998

[1 I] "Information Processing -- Text and Office Systems -
Standard Generalized Markup Language (SGML)", IS0
8879: 1986.

[121 "XML Inclusions (XInclude) Version 1 .O." W3C
Working Draft 16 May 2001

[131 "XML Linking Language (XLink) Version 1.0." W3C
Recommendation. 27 June 2001

[111 "XML Schema Part 0: Primer, W3C Recommendation."
2 May 200 1, http: www.w3.orgTR umlschema-0

[I51 Raymer. D. P.. .-IIRCR4FT DES1G.V: .4 Conceptiial
Approach. 3'" Edition, AIAA Education Series, Kew
York, NY. 1999

[161 Lin, R.. Afjeh. X.Z.. "Interactive. Secure Web-Enabled
Aircraft Engine Simulation using XML Databinding
Integration". AIAA-2002-4058. 38/17 AIAA/..IS.LE/
SAE/ASEE Joint Propulsion Conference & Exhibit.
Indianapolis, Indiana. 2002

[171 Samareh. J. A, . "A Suney of Shape Parameterization
Techniques". C E . . I S / , - I I . ~ A / I C , ~ S E I ~ ~ ~ S . ~ Langley
International Forirni on .leroelasricih, and Stnrctirral
Qnumics 1999. Williamsburg, Virginia. 1999

[18] ISO/WD I0303 STEP. the International Standard for the
Exchange of Product Model Data. I S 0 TC181iSC-1
committee

[191 ISO/WD 10303-1 1. Product data representation and
exchange: EXPRESS Language Reference Manual

[lo] ISOiWD 10303-28. Product data representation and
exchange: Implementation methods: XML representation
of EXPRESS-driven data

[21] Watson. M.. Creating Java Beans: Components for
Distributed ,4pplications. Morgon Kaufmann Publishers.
Sept, 1997

[SI

[9]

11
American Institute of Aeronautics and Astronautics

AlAA 2002- 4058
I nteractive, Secure We b-ena bled
Aircraft Engine Simulation
Using XML Databinding Integration
Risheng Lin and Abdollah A. Afjeh
The University of Toledo
Toledo, Ohio

38th AlAAlASMElSAElASEE Joint Propulsion Conference & Exhibit

Indianapolis, Indiana
7 - 10 July 2002

For permission to copy or to republish, contact the copyright owner named on the first page.
For AIM-held copyright, write to A I M Permissions Department,

1801 Alexander Bell Drive, Suite 500, Reston, VA, 201914344.

INTERACTIVE, SECURE WEB-ENABLED AIRCRAFT ENGINE
SIMULATION USING XML DATABINDING INTEGRATION

Risheng Lin' and Xbdollah A. Afjeh'
The University of Toledo
7801 West Bancroft Street
Toledo. Ohio 13606. USA

ABSTRACT

This paper discusses the detailed design of an XML
databinding framework for aircraft engine simulation.
The framework provides an object interface to access
and use engine data. while at the same time preserving
the meaning of the original data. The Language
independent representation of engine component data
enables users to move around XML data using HTTP
through disparate networks. The application of this
framework is demonstrated via a web-based turbofan
propulsion system simulation using the World Wide
Web (WWW). A Java Servlet based web component
architecture is used for rendering XML engine data into
HTML format and dealing with input events from the
user, which allows users to interact with simulation data
from a web browser. The simulation data can also be
saved to a local disk for archiving or to restart the
simulation at a later time.

INTRODUCTION

Computer programs capable of simulating the
operation of aircraft engines are useful tools that can
help reduce the time, cost and risk of product design
and development and facilitate learning about the
complex interactions between jet engine components.
However, the strongly-coupled nature of the
components' flow physics and the large number of
operating and design parameters needed for simulation
of the aircraft engine system present a challenge to
developers who aim at designing an easy-to-use and
effective engine simulation program for users. Most of
the aircraft engine simulation software currently
available have limitations primarily in the presentation
of the simulation input and output data, due to the use
of text-based interfaces, and the lack of data validation
methods. As a result, engine simulation results could be
overwhelming and difficult to interpret without a

* Research Associate, Student Mcmber AIAA. Departmcnt of Mcchanicai.
Industrial and Manufacturing Enginccring. E-mail: rlin@cng.uroldo.cdu
t Professor and Chair, Departmcnt of Mechanical. Industrial and
Manufacturing Enginccring. Mcmbcr AIAA. E-mall: aafjch@cng.utolcdo cdu
Copyright 7 2002 by Rishcng Lin. Published by the Amcricon Institute of
Aeronautics and Astronautics, Inc., with permission.

significant effort. Moreover, traditional sirnulation data
are, in general, stored in proprietary data formats and
constrained by hardware and operating system platform
differences. Thus, developers are hicdered in their
efforts to synthesize simulation data in their design
unless a clearly defined and interoperable data interface
exists. The bottlenecks caused by iata handling,
heterogeneous computing enviroments and
geographically separated design teams. continue to
restrict the use of these tools [l] .

Web-based simulation, due to its accessibility,
convenience and emphasis on collaborative
composition of simulation models. distributed
heterogeneous execution, and dynarr-ic multimedia
documentation, has the potential to hriamentally alter
the practice of simulation [2] . Presentl?. :he majority of
work in web-based simulation has xntzred on re-
implementation of existing distributed 2nd standalone
simulation logics within Java Applets :?.-!I. Applets are
quite popular because they are suppocd by common
browsers and are safe to execute on ciient computers.
However. with the whole simulation c c 2 iight(v-bozind
to an Applet, it may take a long time for the rich engine
simulation code to load within a clierT's browser. In
addition, it is often not efficient to execute complicated
simulation logic at the client side. ivhere a high
performance computer is generally not available.
Applets' security model, arguably one si its strengths,
also creates obstacles for post-processiq of simulation
data beyond what applets provide since it inhibits
creation of data files on the host machine.

This paper describes a web-based sircraft engine
simulation system, called X-Jgrs. through dynamic
XML databinding framework which permits data
communication with ease. XML [5] . due to its
structured, platform and language independent, highly
extensible and web-enabled nature. has rapidly become
an emerging standard to represent data between diverse
applications. XML can represent both structured and
unstructured data, along with its rich descriptive
delimiters. By using XML to represent engine data in
high performance propulsion system simulation, it is
possible to faithfully model the structural elements of a
chosen component in an interoperable fashion that is
natural in their simulation context. Since HTTP (Hyper
Text Transfer Protocol) already s\pports transmission

1
American Institute of Aeronautics and Astronautics

of plain text, XML data can be moved around readily
using the HTTP through firewalls and disparate
networks. Engine databinding through XML also
provides simulation designers with a higher and more
user-friendly API to work with underlying engine
components repository and thus enables the
components to communicate with each other effectively.

ENGINE MODELS

This section provides an overview of engine analysis
model that is used in our web-based simulation. Also
presented is the designed engine data object model that
will be used in engine databinding framework.

Analysis Model
The mathematical model used to describe the

operation of the gas turbine system in the current work
is patterned after that presented in [6] . Here, the gas
turbine system is decomposed into its individual basic
components: inlet, compressor, combustor, turbine,
nozzle, bleed duct connecting duct, and connecting
shaft. Intercomponent mixing volumes are used to
connect two successive components as well as define
temperature and pressure at component boundaries.
Operation of each of the components is described by
the equations of aero-thermodynamics which are space-
averaged to provide a lumped parameter model for each
component. For dynamic (transient) gas turbine
operation, the model includes the unsteady equations
for fluid momentum in connecting ducts, inertia in
rotating shafts, and mass and energy storage in
intercomponent mixing volumes. A complete
description of the model can be found in [7].

Data Obiect Model
Based on the above engine analysis model, an

"Engine Data Object" (EDO) model was designed to
precisely define the intellectual content of engine
component data, including a complete definition of
engine data entities, attributes, relationships, and
specification of local and global constraints on these
entities.

In order to effectively represent simulation data
using XML, the engine system, shown in Figure l(a),
was first decomposed into individual basic components
in a strict hierarchical manner in accordance with the
XML topology. A set of data structures is then built in
parallel with each engine component. An overall layout
of a simplified data model is summarized in Figure l(b).
Each node in the model shown here is represented as an
engine data object. The figure also indicates (informally)
what data, if any, are encapsulated within each node
object. For example, the N o d e data object shown in
Figure l(c) gives information about a particular

converging-diverging or converging-only nozzle in an
engine simulation. The user-defined parameters of a
nozzle includc a set of nozzle design point data and
nozzle initial operating data, such as mass flow rate,
throat area, exit area. gross thrust. etc. Consequently,
these data are designcd as subchildren data objects in
Nozzle. In addition. the nozzle throat and exit areas may
be adjusted during the transient by a user-defined
schedule; ThroatAreaTransienrControllers and
E.rit..lreaTransientControllers are designed for this

ConholVoluen

- Duct - EleedCwlCmp

r Cornburtor - Tuhne

L SloleduarrDuct

- BleedOuct
- BleedcwlT*rbloc

- shin
- Noule

- RotorShri?

(b)
,i_.
:'Descriptor a

NozzleOesignPointDaia -

. .

4 i NozzleSolutionDais @
(C)

Figure 1 (a) decomposition of engine component; (b)
hierarchical engine data object model; (c) subchildren
objects inside nozzle data object

2
American Institute of Aeronautics and Astronautics

purpose. Lh-IeSolution object is used to store the
solution datasets after a simulation, which itself
contains other children data objects that are not shown
here. An optional Descriptor object can also be
included to describe nozzle operating status.

ESCINE DATABINDING FRAMEWORK

Based on our data object model design. an Engine
Data Binding (EDB) Framework has been implemented
in Java to facilitate binding an engine data object into a
data entity in XML-based engine data file. The
framework makes it easy to convert between the engine
data stored in XML file and their object representations,
and facilitates the applications to access, modify and
store any engine component data object. Figure 2 gives
a schematic representation of all components in engine
databinding framework. Engine databinding framework
can also be run as a standalone application [8].

Engine Schema
Engine schema establishes a bridge between XML-

based engine data and its data object model. It
associates each piece of the information defined in the
data object model to a precise location in the XML
structure. .A set of engine schemas have been designed
using X\lL Schema language [9] that specifies how the
constituents of the engine data objects are mapped to an
underlying XML-based engine data structure. The rules
in the data model will guarantee that the schema
description of engine data is syntactically correct and
also folloivs the grammar defined within it.

Figure 3 shows a sample schema representation for
the .Voz:!e and one of its children, TransientController,
which is used to supply transient control parameters for
throat and exit areas. Based on the Nozzle data model

shown in Figure l(c), the “Nozzle” schema defines all
the data elements that are contained in a single nozzle
data object. These elements are constrained by their
corresponding complexTypes and simpleTypes and
encapsulated in the ~Vozzle object. For example.
.VozzleDesi,SriPointDclltr defines all its permitted data
variables. such as ,Clas.sFloivRuie, ThroatArea etc, and
their corresponding data types. which are built-in
double type. Also note that in the above Nozzle schema
only ,VozleDesignPointData element is explicitly
defined, the rest of its element definitions use the “ref’
attribute to tell the data parser in the engine simulation
that the definition for these elements are defined in
other schema files with the same target namespace (Le,
the default “engine” namespace in Fig.3) as nozzle.
These ‘ref ed schema will be automatically included by
schema parser during the run time. This kind of flexible
design will guarantee that all the basic schema types
can be reused. Moreover. it will allow for modular
development and easy modification of engine schema
as engine data object model evolves in the future.

Schema Compiler
The engine schema compiler is designed to map an

instance of an engine schema into the appropriate
engine data object model. It aziiomatically translates an
engine-specific schema into a set of derived engine data
object models (set of classes and types which represent
the data) with appropriate access and mutation (Le., get
and set) methods that can be used to affect the
underlying engine data files. Figure 4 shows an
example of how a generated class should correspond to
the nozzle schema defined in the previous section. With
the “Nozzle” schema defined. attributes are “compiled”
into simple Java types, usually primitives; element
(along with its type information which specifies the
conten t model) becomes engine da ta class, with

Engine Data Model

Engine Schema

I ,

Figure 2. Engine databinding framework

3
American Institute of Aeronautics and Astronautics

' y - , e r s G - j ' s ;'-s

sa scnema !arge!Naresoace=

:.,eng ne' eie.rentForrrDefajl:="qr;ai,fiec' vemn:" 2')
r = TransientController xsd":> cxsd include s

<xsd-include s r = 'Descriptor.xsd":>

Cxsd complexType name='Voule-t">
<xsd.sequence>

<xsd element name='DescnptoC type="Descnptor-t" rninOccurs=*O"'>
<xsd element name='NouleDesignPoinfData">

Cxsd cornplexT,pe>
<xsd'aUr:cute name="MassFlowRate" type="xsd:double"P
cxsd.an: cute name="ThroatArea" type="xsd:double" >
cxsd anrcute name="ExitArea" type="xsd:double"i>
Cxsd anntute name="DragCoefficient" type="xsd:double"b
<xsd .an rn te name="VelocityCoefcient" type="xsd:double"l>
<xsd-anrcute name="GrossThrust" type="xsd:double"'>

4 x s d cornplexTjpe>
<ixsd:element>
<I-- NozzlelnitralC,-s~~ringDala element IS simiianly oesigned

and ommilfez -$'e 'or simplicity-->
<xsd'element name= ThroatAreaTransCntl"

type='TransientCntI-t"b
<xsd.element name='ExitAreaTransCntl"

type='TransientCntl-t"l>
<!-AN NorzieSc'; 7-Dara elements and ornmitted ior s !~p l iC ! r j ' - -~

</xsd'sequence>
<xsd'attribute name='Vame" type="xsd.string" use="requiredl>

<lxsd.complexType>
lxsd schema>

'xml version=": C"7s
csd'schema xmlns xsd="hnp ."ww.w3.org/2001/XMLSchema"

elementForrnDeiault="quairfied" version="l .O">

< I - - TransierirCor:rroils~ r r -oexType -->
<xsd:complexType narre= TransientCntl-t">

<xsdsequence>
<xsd elemerr -ame="TimeArray" type="doubleDatalist"i>
<xsd elemer l -ame="ValueArray" type="doubIeDatalist":>

4 x s d sequence>
<xsd:attribute nane='name' type="xsd:string" use="optional"i>

<lxsd.complexType>

<xsd,simpleType name='$oubleDatalist">

<Ixsd:simpleType>
<xsd:list itemType='xsd:double'*l>

xsd-schema>

I- all the Java -,port statements here

iublic class F:cu:e implements java.io Senalizable {
private Str1r.G _lame;
pnvate Cescrstor descriptor;
private Ces,q?ointData _nouleDesignPointCa':
pnvate In!tC:eratingData _noulelnit05eratingC3ia;
pnvate Thrca~kaTransCntl -throatAreaTransCn:l:
pnvate ExitAreaTransCntl _exitAreaTransCntl:
pnvate NozzeSolutionData -nouleSolbtionData.

public Nowe!) (
super();

public StnnG setName() (
return this -name;

1

1

public void serName(Stnng name) (
this.-nar;e =name;

public ExitAreaTransCntl getExitAreaTransCntlli {

i
return in's -exiIAreaTransCntl;

public doid setExitAreaTransCntl(ExitAreaTransCntl exitAreaTransCntl) (

1
:his _exitAreaTransCntl = exitAreairansCntl,

I / - the same .wth ail other rypes and are ornineo here

public woiean validate()
throws ~ngineValidationExceprion {
i

'lalidator validator = new Validatori;:
ialidator.validate(this);)

catch iE'SineValidationException vex) {
rer.:n ialse:

return :?de;

1
puolic VO!G -arshalfiava.io.Writer out)

thrcws MarshalException, EngineValida:,onException (
Marsha,,er marshal(this. out);

}
public sta:c houle bnmarshalijava.~o.i?eader ?eader)

!hrows LlarshalExcepfion. EngineVa1ida;onExceDtion {
return i~uouie)Unmarshaller.unmarshal(Nou.e.class, xader):

!

Figure 3. Engine schema representation of Nozzle and
TransientControl data object model

Figure 4. Yozzle data class generated by schema
compiler process

generated data types and properties encapsulated in it.
The generated class provides pairs of accessor (get) and
mutator (set) methods for all the properties defined in

objects automatically. These are achieved through an
underlying Marshalling Framework design.

engine schema, which closely follows the JavaBean
Design Pattern [101.

In addition, the engine schema compiler can
generate the data 'validation' class code so as to
enforce the constraints expressed in the schema. The
code generated by the valid schema translation will
check that incoming engine data files are 'legal' with
respect to the constraints defined in schema, thereby
ensuring that only valid XML-based engine data files
are produced by the marshalling process.

The generated Java classes also include a set of
marshal, and iinmarshal methods that can be used to
"translate" engine application data f r o d t o engine data

Marshalling Framework
The marshalling framework supports the

transportation (immarshal) of XML-based engine data
into "graphs" of interrelated instances of objects that
are generated by engine schema complier and, in
addition, converting (marshal) such graphs back into
engine data stored in XML documents. The marshal
method works by taking a desired Writer object as
argument and then returning an XML element
representation of that object. If the object contains
references to other engine data objects, then recursion
can be used. using the same method. The same applies
to unmarshaling process where a general Reader is

4
American Institute of Aeronautics and Astronautics

used. When the engine data are correctly unmarshakd,
each element node in the XML file becomes an instance
of the data class that was generated by engine schema
compiler, i.e. engine data object. Then. the engine
simulation components can use the corresporiding
methods, along with a set of miitator and occesor
methods, to work with the engine data in the underlying
data file. The end result is engine data binding.

SIMULATION ARCHITECTURE

X-Jgts is a web-based. interactive, graphical,
numerical gas turbine simulator which can be used for
the quick, efficient construction and analysis of
arbitrary gas turbine systems. It also provides a
systematic, meaningful data presentation and secured
data operation scheme with the support of a built-in
data binding framework. Figure 5 illustrates the overall
simulation architecture described in this paper, as well
as its major components and the interactions between
web client and simulation server.

Web Client
In X-Jgts system, the client user interface is

delivered through a web browser. The web browser is a
universal user interface that is responsible for
presenting engine simulation data, issuing requests to
the simulation web sener. and handling any results
generated at the request of the user. X-Jgrs uses both
dynamically generated HTML and Swing-based Java
Applet to properly present user-friendly data; in
particular, HTML is used to display simulation results,

while Swing-based Applet is used for graphic data
display. The platform-independent nature of HTML and
Java Applet enables the mgine simulation to be widely
conducted from heterogeneous, networked computers.

A s a general rule for web-based simulation,
application logic should not be implemented on the
browser. Complex simulation logics that are tightly
built into Applets are normally inefficient to execute
due to the fact that client side users generally lack
powerful computing resource. In addition, it may take
quite a long time for a client’s browser to load.
Therefore, the browser. HTML, and Swing Applets
designed in X-Jgts are used strictly for delivering the
user interface and view into the engine simulation. The
user requests are made either from the front-end Applet
or HTML code to perform designate tasks remotely in
the simulation web sener.

Simulation Server
Engine simulation sener is a dynamic extension of

a Web server and the heart of any web interactions. It
uses HTTP as protocol for communication and consists
of static resources, such as the front end simulation
Applet, as well as dynamic web pages (HTML) that are
generated by different mgine web components hosted
in the server. The wzb server listens for incoming
requests and then senices the requests as they come in.
Once the server receiles a simulation request, it then
springs into action. Depending on the type of request,
the web server might look for a web page, or execute a
web component on the si!n er. Either lvay, it will return
some kind of results to the web client.

In X-Jgts, engine web components are sets o f

Engine
Simulation
Computing

Databinding I Engine I Result

Conf.

Downloa
Data

Figure 5. Web-based simulation architecture in X-Jgts

5
American Institute of Aeronautics and Astronautics

simulation task-related Servlets [1 11 or JavaSevsr Pages
[I ?] . ServletiJSP provides a platform-independent
means of extending a web server’s capabilities. When a
user issues a request for a specitic Servlet. the server
will simply use a separate thread and then process the
individual request. This has a positive impact on
performance.

Engine web components are running in the Tomcat
[I33 Web container to dynamically process various
simulation requests and construct responses. The web
container provides services such as request dispatching,
security, concurrency, and life-cycle management.
Based on different task-related services, engine web
components may invoke other web resources directly
through embedded URLs that point to other web
components while it is executing. or indirectly by
forwarding a request to another resource using
RequestDispatcher. There are four main services
currently available in the engine simulation server.

Simulation Web Component
Engine simulation service is a core web component

that provides a transient, space-averaged. aero- and
thermo-dynamic gas turbine analysis for a web client
based on the engine analysis model. Besides that, the
simulation web component includes the built-in engine
databinding support and an underlying XML-based
engine database repository to store simulation data
(Figure 5). During the engine simulation, the
verification logics that are automatically generated by
engine schema compiler can be applied inside the
simulation so that the users’ inputs and simulation
outputs could be checked. Engine components can also
conveniently manipulate the engine data with a set of
accessor and mutator methods devised from
databinding framework. When a simulation completes,
engine components can readily marshal sets of engine
object data into the underlying data repository for
storage and unmarshal them back to engine data objects
later when data manipulation is necessary. This feature
gives a very useful and natural n-ay for the storage of
any engine data object and provides the engine
simulation with unambiguous. meaningful and
interpretable representation of engine data sets. The
engine simulation service can also generate simulation
graphs and transcript data dynamically and send them
to the front-end Applet for display.

File Download Web Component
X-Jgts allows users to save their simulation results

to the local file system so that users can redisplay their
simulation result or restart simulation at a later time.
This is achieved internally by the file-download service.
Due to security reasons. current web browsers prohibit
the front-end simulation Applet from directly writing
data files on the host that is executing it. Nevertheless,

Applets can usually make nenvork connections to the
host they came from. In X - J ~ K . whenever a user wants
to download a complete sixulation result or engine
configuration file, the front-snd Applet will make a
request to tile-download semice resided on the
simulation web server, loczrc the corresponding case
file from database repositon- and then generate a
download response to the ujsr. By setting the HTTP
Con t e n t - Di s p o s L t 1s” response header as
attachment, Web browser at 2lient side will pop up a
”save as” box to let user save simulation result.

File Upload Feb Comuonent
At times users have a requirement to upload a file

from their local file system to the web server for display
of engine simulation resulr in a more meaningful
way. X-Jgts web components include a Servlet that can
receive a file upload using its input stream. When a file
is sent via a browser, it is exbedded in a single POST
request with multipart/form-data [141 encoding type.
The file upload Servlet .rsill rake in the part of this
multipart data stream, reassexbled and encoded on the
server, and then dispatch rhe processing results to
display service, where dyczmically generated engine
data file in HTML format a x sent to client’s browser
for display.

Displav Web Component
Since engine data are stored in XML file format. it is

easier to apply certain transfarmation logic such that
simulation results can be dis3layed in a more friendly
way within the user’s bron 527. XSLT [I j] provides a
way to transform the engine Sata without cluttering up
the web components code ivith HTML. When the
simulation server receives ii Lisplay request, the build-
in XSLT processor kno\\j how to parse engine
component-specific XSLT style sheets and apply
transformations. Best of all. 3. clean separation between
engine data, presentation, acd simulation logic allows
changes to be made to the look and feel of a web site
without altering the simulation code. Because XML-
based engine data can b t transformed into many
different formats, it can also achieve portability across a
variety of browsers and other devices.

DEMONSTR-\TTON

Based on the designed data object model,
databinding architecture. ana simulation architecture, a
web-based engine simulation has been implemented
that internally uses Onyx [161 as the engine simulation
logic. Onyx is an objecr-oriented framework for
propulsion system simulation. Figure 6 shows the
XML-based Java Gas Turbine Simulator, X-Jgrs, being
accessed from an Internet Explorer browser.

6
American Institute of Aeronautics and Astronautics

Figure 6 . XML-based Java Gas Turbine Simulator accessed from a Web bro\vs::

For practical purposes, X-Jgts currently provides
users with 3 different kinds of simulation services. A
simulation identifier (ID) is required to perfom each
service.

Start a new simulation
A user can use this choice to start a new engine

simulation in interactive construction mode. After the
user enters a simulation ID, and starts to perform the
simulation, the Swing-based Applet interface (Figure 6)
will appear. From there the user can access the various
main windows of the simulation system: Engine
Schematic Layout, System Control Dialog, Graphing,
Transcript, or Save User Case.

Before each simulation is run, the user must provide
each individual engine component with initial
simulation configuration data from the designed Engine
Schematic Layout Dialog (see Figure 7). An engine
model is developed by building an engine component

schematic graphically as Icons (e.g.. BktdDuct, Nozzle,
VariableCompressor. etc.) and connecting them
together. In the diagram, the arrowhesded connecting
lines represent both the directional t'lon- path for fluid
through the engine, and the structural connections along
which mechanical energy is transmitted. The user can
define the operational characteristics for the component
(i.e., the component name, design- and initial-operating
point data, etc.) in the engine component's dialog
window (Figure 8). The $.stern Contrai Dialog (Figure
9) provides controls for the overall operation of the
simulation. The steady-state numerical solver is used to
balance the gas turbine equations at the initial operating
point as was defined by the user: while transient solvers
are used for dynamic engine perforniance analysis.
When the necessary data input for simulation
configuration is finished, the simulation can have the
option to start simulation immediately or download the
configuration file and run it later.

7
American Institute of Aeronautics and Astronautics

Figure 7. Engine schematic layout dialog

Figure 8. Dialogs used to set engine component (Nozzle) operational characteristics

Figure 9. Engine simulation system control dialog

8
American Institute of Aeronautics and Astronautics

Figure 10. Graphically display engine component parameters

Once a simulation begins, the engine configuration
data will be encoded in XML format and sent over the
Internet to the web simulation server. When the server
receives the engine configuration file, it then
automatically dispatches the file to the simulation web
component. where engine databinding and simulation
logic are performed. At the same time, the user can
select from Graph Control Dialog (Figure 10) to plot a
number of specified parameters for any of the
components currently displayed in the Engine
Schematic Layout window. The user may also view
simulation status reports, using the Transcript button
shown in Figure 6, that are sent from simulation web
server during the simulation. Once the simulation is
completed, the simulation web component will marshal
all engine data objects into an engine data file
designated by its simulation ID, and store it into the
database repository. Finally, the user can use Save
User Case button to download the complete solution of
the simulation case for later use.

Rerun simulation from an existing file
X-Jgts also provides a service for users to directly

input engine simulation configurations from a file,
which allows bypassing the engine construction
procedures. Part of a sample configuration file is shown
in Figure 11. When a user uploads the configuration file
from a web browser (Figure 6), all the defined
simulation parameters will be immediately available
from Engine Schematic Layout Dialog and System
Control Dialog. Users can then use User cases menu in
Engine Schematic Layout to verify these configurations.
Users can also edit these data using the above two
dialogs. In this case, the updated configuration file will
be sent to the server to run the simulation.

Show existing simulation data results
If a user has finished an engine simulation case and

saved the simulation data using X-Jgts, heishe can later
redisplay the simulation results in a web browser with a
more meaningful data presentation scheme using this

service. In this case, when the web simulation server
receives an engine simulation case file uploaded from
the user's web browser (Figure 6), it will internally use
Displaj. Web Component (combined with sets of pre-
designed XSLT style sheets) to dynamically generate
HTML code for display within the user's browser.
Figure 12 shows the nozzle data file from an example
simulation case. The user can choose different engine
components to display from the drop-down list at the
top of the web page.

<S:eaayStateSolver SioverNane. NewtoniiarisonSolve<
ErorToierance- '5.OE-i ~Cswer~e*ceRate="0.7"
literal1onToFa1lure="50 2eV':rsa: e-3 ze='O 25
LowerPacfalLlr,:='O 001C' 1;me+-a L ~ I F " O 01"')

ErrorToierance='5 OEd ' C~iv_e.gecceRale="O 7"
In:erat,onToFali~re='50' 2e:al r e . : 2'
FinaIT.,re='Z 0 Pend?a:oaSlze=': 25
LowerPan8aiL.mli='0 001C LisxrFar afL,mlt="O.O1" :>

<Connector :mm= Envimnmeni' :o= LPC' rieeaback="false',>
<Connector frorr='LPC' :o='MVl3' sFeeoack="alse':>
<Connector f,om="MV13" to= 'HPC' sFeemack="false'l>
<I-. 3her connectors are defrreo 10 a s r a' vannar -->

<TpansfeniSoiver S:overName= I-~ovecE. e'

<Connec:on>

<,Connec!on>
I- Conf.guration,
+qneMoaeP

<Comwnents>
<'-only Nozzle is illustrateo "ere the s3re wnh all other cornpnenrs ->
<NonSource,

CNonRatator,
CNozzie Name=~Nozzle">

<NozzleDesignPointDala Masr i owRa!e="195.0"
TiroatArea-"430 0 Ex:Area='492.0" OragCoefheni="O 952
VelocltyCoeffc ew'0.98' G~ossThrus1-''9400 O?>

<'-lhe same with Noznelni!F-.~fDafa-~
<ThroatAreaTransienlontml,en qame=7hmat Area Transient Contmller"

<T,meArray> 0 0 10 0 13 C < TmeArray,
'VaiueAnay, 430 0 430 0 EiC 0 <,'ValueArray>

<I- :he same Nifh ix ; tArea~a~~ientContmi lers ->
'ThroatAreaTransienConuo eo>

<,Nozzle>
<,NonRatalw>

<,NonSource>
<.Comwnents

c EngineMwei>
EPgineBase,

EngineRooP

Figure 11. Engine simulation configuration file
specified in XML file format

9
American Institute of Aeronautics and Astronautics

X-JGTS Simulation Data View

1-m
. . . ~ _ _

1’3s 0 430 0 492 0 J ?52

N o z z l e l r n t k l l O p e r a t d t a

-mw#m
430 0 492 0

Throat Area Transtent Controller Exit Area Transient Controller

0.0 430.0

10.0 430.0

13.0 660.0

0.0

10.0

13 0

492 0

492.0

880.0

430 0000 ‘52 X O 0.9564 0 8897 0 0000 1921 3: 100 3765 0 00000000

Trdnsient S ta te Sdutm Data BmwB
OoooO 430CoC; 4 9 2 W 09564 0 E097 0 0000 192: 31 io0 3765 C OOJOMOC

oim 43oca: 4920003 09554 0 E872 0 ooco 1922 3 io: 404: c wocmnc
o:om 43ocit; w o o 0 0 cs37 0 iB43 0 ooco 2125 23 ;m 4554 5 oo0cmoc
03oOo 430cOCj 492oooO 09534 0 E843 0 0000 22% 23 :03 4b77 c MOOOOOC

I

4 Done ;i3 MY ComDuter

Figure 12. Nozzle simulation data displayed within a user’s web browser

COXCLUSION

In this work, an XML-based dynamic databinding
framework for use in engine simulation has been
discussed. By dynamic data binding, the framework
provides an object interface to access and use engine
data, transparently mapping simulation data in engine
components as engine data objects. The framework also
enables the separation of engine simulation logic from
its persistence logic. such that the engine simulation
codes and the underlying data persistence codes can be
developed independently.

Since engine component data in the binding process
are stored in an XML document, they not only bypass
the requirement to have a standard binary encoding or
storage format, but also provide the meaning of the data
through its tag representation. Furthermore, it is
completely natural to move around XML engine data
using HTTP through disparate networks.

This paper also describes a Web-based engine
simulation system, X-Jgfs, which internally uses engine

databinding framework. The simulation system couples
a front-end graphical user interface. developed using
the Java Swing API, and various Java Servlet-based
web components from engine simulation server to
service user’s requests. The designed web components
include remote simulation service, dynamic data
display service in HTML format. and file download and
upload services which allow a user to save data for later
use in a more secure way. All these services are readily
available via the built-in databinding framework
support and the use of XML to describe engine data.
The combined package provides analytical, graphical
and data management tools which allow users to
construct and control dynamic gas turbine simulations
by manipulating graphical objects from a variety of
heterogeneous computer platforms through the use of
Java-enabled world-wide web browsers.

The method developed in this paper is generic and
may readily be used for other simulation applications
requiring intensive data exchange. Using this approach,
developers are enabled to design better aircraft engine

10
American Institute of Aeronautics and Astronautics

simulation codes via
data representation
validation method.

a systematic and more iiicaiiingh[[151 XSL Transformation W3C Recommendation version 1.0.

[161 Reed, J.A.. 1998. "Onyx: A n Object-Oriented Framework
for Computational Simulation of Gas Turbine Systems."
Ph.D. Dissertation. The Cniversity of Toledo

scheme and a built-in data. November. 1999. hiiu: v.\\\\ .i.v3.orc TR.'xslt,

ACKSON'LEDGM ENTS

The authors gratefully acknoxvledge partial financial
support from NASA Grant NAG-1-2234 under the
direction of Mr. Wayne K. Gerdes, NASA Langley
Research Center. They also n.ould like to express their
appreciation to Dr. John A. Reed, the University of
Toledo, for providing parts of 0nJ.K [I61 simulation
code to test this work.

REFERESCE

Reed, J. A,, Follen. G. J. and Atjeh. A. A,, Improving the
Aircraft Design Process using Web-based Modeling and
Simulation, ACM Transactions on Modeling and
Computer Simulation. Vol. 10. KO. 1.2000, pp. 58-S3
Fishwick, P. A,. Hill. D. R. C. and Smith. R., Eds.,
Proceedings of the I558 International Conference on
Web-Based Modeling and Simulation. SCS Simulation
Series, Vol. 30. (1998).
Reed, J. A. and Xfjeh. A. A,. d Java-based Interactive
Graphical Gas Turbine Propulsion S w e m Sirnzilator,
AIAA paper 97-0233. 35th .\erospace Sciences Meeting
and Exhibit. Reno h T
EngineSim Beta Version l . ib. NASA Glenn Learning
Technologies Project. hnp: n\% w . _ e r c . n a s a . g o v ' w \ ~ ~ V ~ K -
I Z/airplaneinpsim.hrml
Extensible Markup Language (XML) 1 .O. lV3C
Recommendation. Feb. 1993
Daniele, C . J., Krosel. S. M.. Szuch. J. R., and
Westerkamp, E. J.. "Dig:tal Computer Program for
Generating Dynamic Engine Models (DIGTEM)."

Reed, J. A., "Development of an interactive graphical
propulsion system simulator." Master of Science Thesis,
The University of Toledo. Toledo. Ohio, August 1993.
Lin, R. and Afieh, A. .i.. .-1 Diwamic Data Binding
Framework for High Pz$ormance Object-Oriented
Propulsion Svstem Similarion, 2002 Advanced
Simulation Technologies Conference. High Performance
Computing Symposium. April 2002
"XML Schema Part 0: Primer. W3C Recommendation,"
2 May 2001. http:!iww\v.\\3,org/TIUxmlschema-0

NASA TM-83446. 1983.

[I O] Watson, M., "Creating Java Beans: Components for
Distributed Applications." Morgon Kaufmann
Publishers, Sept. 1997

[1 I] Sun Microsoft System. Jat a Servlet Specification at:
httu://iava.stm.com nrodiic:s servlet index.html

[121 Sun Microsoft System. Java Server Page Specification
at: httu::'iava.sun.com m x i x i s , isp index.html

[I 31 The Jakarta Project at: http: jakarta.apache.org
[I41 File Upload Specification RFC1867

http:!./www.ietf.orc rfc ric I867.txt

11
American Institute of Aeronautics and Astronautics

Reed. J . ; I . . Fdiet7, G. .j. unci AJjeh. ‘-1. ,-I

Improving the Aircraft Design Process Using
Web-based Modeling and Simulation

John A. Reed?, Gregory J. Follenz, and Abdollah A. Afjeht

tThe University of Toledo

2801 West Bancroft Street

Toledo, Ohio 43606

:NASA John H. Glenn Research Center

2 1000 Brookpark Road

Cleveland, Ohio 44135

Keywords: Web-based simulation, aircraft design, distributed simulation, JavaTM, object-oriented

~~ ~ ~ ~~

Supported by the High Performance Computing and Communication
Project (HPCCP) at the NASA Glenn Research Center.

Page 1 of35

Abstract

Designing and developing new aircraft systems is time-consuming and expensive.

Computational simulation is a promising means for reducing design cycle times, but requires a

flexible software environment capable of integrating advanced multidisciplinary and muitifidelity

analysis methods, dynamically managing data across heterogeneous computing platforms, and

distributing computationally complex tasks. Web-based simulation, with its emphasis on

collaborative composition of simulation models, distributed heterogeneous execution, and

dynamic multimedia documentation, has the potential to meet these requirements. This paper

outlines the current aircraft design process, highlighting its problems and complexities, and

presents our vision of an aircraft design process using Web-based modeling and simulation.

Page 2 of 35

1 Introduction

Intensive competition in the commercial aviation industry is placing increasing pressure on

aircraft manufacturers to reduce the time, cost and risk of product development. To compete

effectively in today’s global marketplace, innovative approaches to reducing aircraft design-cycle

times are needed. Computational simulation, such as computational fluid dynamics (CFD) and

finite element analysis (FEA), has the potential to compress design-cycle times due to the

flexibility it provides for rapid and relatively inexpensive evaluation of alternative designs and

because it can be used to integrate multidisciplinary analysis earlier in the design process [171.

Unfortunately, bottlenecks caused by data handling, heterogeneous computing environments and

geographically separated design teams, continue to restrict the use of these tools. In order to fully

realize the potential of computational simulation, improved integration in the overall design

process must be made. The opportunity now exists to take advantage of recent developments in

information technology to streamline the design process so that information can flow seamlessly

between applications, across heterogeneous operating systems, computing architectures

programming languages, and data and process representations.

The World Wide Web has emerged as a powerful mechanism for distributing information on a

very large scale. In its current form, it provides a simple and effective means for users to search,

browse, and retrieve information, as well as to publish their own information. The Web continues

to evolve from its limited role as a provider of static document-based information to that of a

platform for supporting complex services. Much of this transformation is due to the introduction

of object technologies, such as Java and CORBA (Common Object Request Broker Architecture)

[36] within the Web. The integration of object technology represents a fundamental (some would

say, revolutionary) advancement in web-technology. The web is no longer simply a document

access system supported by the somewhat limited protocols. Rather, it is a distributed object

system with which one can build general, multi-tiered enterprise intranet and internet

applications.

Page 3 of 35

The integration of the Web and object technology enables a fbndamentally new approach to

simulation: Meb-based simulation. A Web populated with digital objects - models of physical

counterparts - will lead to model development by composition using collaborative Web-based

environments [9] . Model execution will occur across networks using Web-based technologies

(e.g., Java) and distributed simulation techniques (e.g., COMA). Finally, simulation execution,

models, and other related data will be documented using forms of hypermedia (hypertext, video,

virtual models, etc.).

Web-based simulation has the potential to provide the necessary tools to improve the aircraft

design process through integration and support for collaborative modeling and distributed model

execution. In the remainder of this paper, we examine how this might be achieved. In Section 2,

we provide a brief overview of the aircraft design process, drawing attention to the complexities

of the process and its inherent problems. Section 3 provides a review of the area of Web-based

simulation, and singles out several principles of Web-based simulation that we believe are

important in the aircraft design process. In Section 4, we present an example scenario illustrating

how Web-based modeling and simulation might be used in that process, and discuss aircraft

model development and distribution using the Onyx simulation framework. Onyx's object-

oriented component model, visual environment for model assembly, and support for both Web-

based and distributed object execution are explained in context of the integration of a jet engine

within the aircraft. Lastly, in Section 5 , the relationships to the Web-based simulation principles

outlined in Section 3 are identified and discussed, as are general implications of Web-based

simulation on the design process.

2 The Aircraft Design Process

The aircraft design process can be divided into three phases: conceptual design, preliminary

design, and detailed design. The conceptual design phase identifies the various conditions of the

mission, and synthesizes a set of initial aircraft configurations capable of performing the mission.

For commercial aircraft, the mission is defined by airline company demands, which typically

Page 4 of 35

include payload requirements, city-to-city distance along a proposed service route, traffic volume

and frequency, and airport compatibility. If the conceptual design effort confirms the feasibility of

the proposed mission. management may decide to proceed with one or more preliminary designs.

In the preliminary design phase. more detail is added to the aircraft design definition. Here the

aerodynamic shape, structural skeleton and propulsion system design are refined sufficiently so

that detailed performance estimates can be made and guaranteed to potential customers. In the

final design phase, the airframe structure and associated sub-systems, such as control systems,

landing gear, electrical and hydraulic systems, and cabin layout, are defined in complete detail

~ 7 1 .

The design of an aircraft is an inherently complex process. Traditional preliminary design

procedure decomposes the aircraft into isolated components (airframe, propulsion system, control

system, etc.) and focuses attention on the individual disciplines (fluid dynamic, heat transfer,

acoustics, etc.) which affect their performance. The normal approach is to perform disciplinary

analysis in a sequential manner where one discipline uses the results of the preceding analysis

(see Fig. 1). In the development of commercial aircraft, aerodynamic analysis of the airframe is

the first step in the preliminary design process. Using the initial Computer-aided Design (CAD)

geometry definitions resulting from the conceptual design studies, aerodynamic predictions of

wing and fbselage lift and drag are computed. Key points in the flight envelope. including take-off

and normal cruise, are evaluated to form a map of aerodynamic performance. Next, performance

estimates of the aircraft’s propulsion system are made, including thrust and fuel consumption rate.

The structural analysis uses estimates of aerodynamic loads to determine the airframe’s structural

skeleton, which provides an estimate of the structure weight.

Complicating the design process is the fact that each of the disciplines interacts to various

degrees with the other disciplines in the minor analysis loop. For example, the thrust requirements

of the propulsion system will be dependent on the aerodynamic drag estimates for take-off, climb

and cruise. The values of aerodynamic lift and yaw moments affect the sizing of the horizontal

and vertical tail, which in turn influence the design of the control system. For an efficient design

Page 5 of 35

process, fully-updated data from one discipline must be made accessible to the other disciplines

without loss of information. Failure to identify interactions between disciplines early in the minor

design cycle can result in serious problems for highly integrated aircraft designs. If the coupling is

not identified until the system has been built and tested experimentally. then the system must

undergo another major cycle iteration, further increasing the time and expense of product

development.

There are many factors that can make the design process less efficient. These include:

(1) Lack of interoperability. Numerous software packages - CAD, solid modeling, FEA,

CFD, visualization, and optimization - are employed to synthesizs and evaluate designs.

These tools are often use different, possibly proprietary, data formats. As a result, they

generally do not interoperate, and require manual manipulation Lvha passing data

between applications. Although in some cases, custom translation tools are available to

“massage” the data into the appropriate format, users still spend considerable time and

effort tracking data and results as well as preparing, submitting and running the computer

applications [28].

(2) Heterogeneous conzpriting environments. The aircraft design computing environment is

extremely heterogeneous, with platforms ranging from personal computers, to Unix work-

stations, to supercomputers. To use the various software required in the design process,

users are forced to become familiar with different computer architectures, operating sys-

tems and programming languages.

(3) Geographically separated design groirps. Multidisciplinary design and analysis is fie-

quently carried out by geographically dispersed engineering groups. In special cases,

entire subsystems may be designed and developed by third-party contractors or compa-

nies. The propulsion sub-system, for example, is designed and built separately by the pro-

pulsion company, and delivered to the aircraft company for installation in the aircraft. In

any case, geographic separation places pressure on the designers to maintain a high level

of interaction during the design process so that loss of data is minimized.

Page 6 of 35

Improving the design process. therefore, requires the development of an integrated software

environment which provides interoperability standards so that information can flow seamlessly

across heterogeneous machines, computing platforms, programming languages. and data and

process representations. We believe that web-based simulation tools can provide such an

environment.

3 Principles of Web-based Simulation

Since its inception in 1990, the World Wide Web (WWW or Web) has quickly emerged as a

powerful tool for connecting people and information on a global scale. Built on broadly accepted

protocols, the WWW removes incompatibilities between computer systems. resulting in an

“explosion of accessibility” [2. 301. Within the simulation community this proliferation has led to

the establishment of a new area of research - Web-based simulation - involving the exploration

of the connections between the WWW and the field of simulation. Although the majority of work

in web-based simulation to date has centered on re-implementation of existing distributed and

standalone simulation software using Web-related technologies, there is growing

acknowledgement that web-based simulation has the potential to fundamentally alter the practice

of simulation [1 11.

In one of the first papers to explore the topic of web-based simulation, Fishwick [8] identifies

many potential effects of web-based simulation, with attention given to three key simulation

areas: (1) education and training, (2) publications, and (3) simulation programs. He concludes that

there is great uncertainty in the area of Web-based simulation, but advises simulation researchers

and practitioners to move forward to incorporate Web-based technologies. Building on Fishwick’s

observations, Page and Opper [25] present six principles of web-based simulation which capture

the vision of future simulation practice: (1) digital object proliferation, (2) software standards

proliferation, (3) model construction by composition, (4) increased use of -’mal and error”

approaches, (5) proliferation of simulation use by non-experts, and (6) multi-tier architectures and

multi-language systems.

Page 7 of 35

In the remainder of this section, we briefly review several of these principles. In the following

sections, we will examine in more detail how each apply to both the development of a simulation

environment, and to the improvement of the aircraft design process.

3.1 Digital Objects.

In the mid 1960’s a pioneering simulation language called Simula-67 [3] was developed to

more faithfully model objects in the physical world. Simula-67 introduced many of the core

design concepts (e.g., classes and objects) which form the foundation for the object-oriented

programming paradigm. Since that time, object-oriented technologies, such as object-oriented

programming (OOP), design (OOD) and analysis (OOA), have had a major impact on the field of

simulation. Today, the majority of simulation languages, as well as many of the most successful

general purpose-languages, are object-oriented.

The importance of objects in simulation applications naturally leads us to consider their use as

part of the WWW infrastructure. The WWW, however, is currently based on documents. rather

than objects. In the future, though, it is envisioned that the Web will be populated by digital

objects, with documents being just one type of object. The objects, representing models and data

for use in simulation environments, will be made available for use through publication on the

WWW [9].

Indications of a transition to an object-based WWW are currently evident in the successful

application of mobile code and distributed object technologies. Mobile code - programs which

can be transmitted across a network and executed on the client’s computer - make it possible to

deliver digital objects, in either executable or serialized form across the WWW. Several

programming languages which can produce mobile code have been developed [3,32,33.34]; the

most well known and widely supported is Java [11. Compiled Java code, known as byte-code, can

be downloaded across the Web to the client where it is executed by a Java Virtual Machine. The

Java run-time system, incorporated within the Java Virtual Machine, provides an extensive class

library that can be accessed by the compiled code.

Page 8 of 35

Component Object Model (COM) [29], and High Level Architecture (HLA) [2 11. Alternatively, a

component architecture may be defined by the particular simulation application in which the

objects are to operate. This is often the case in domain-specific simulation environments, where

the component architecture must be crafted to meet specific requirements of the domain. The

Onyx simulation environment, described in the following section, is such an example; it defines a

component architecture which is oriented towards physical modeling of aerospace systems.

3.4 Heterogeneous Modeling and Simulation

The digital objects of our Web-based simulation future will populate a Web that is highly

heterogeneous. Digital objects will certainly be developed using different programming languages

and programming styles (e.g., object-oriented, procedural, functional, etc.). The digital objects

will themselves be highly variable. Some will be based on mobile code which can move across the

Web (e.g., agents), while others will form object busses which provide services from specific

locations on the Web. Applications will become more complicated as a result, with complex

multi-tier architectures becoming the standard. In order to operate effectively in such an

environment, Web-based simulation will need extensive enabling technologies such as search

engines to locate appropriate digital objects and models, translators to convert models and data to

appropriate formats, and expert systems to guide non-experts in the use of Web-based simulation

models.

4 An Example Scenario
In this section, we present a scenario illustrating how Web-based modeling and simulation can

be used in the aircraft design process. Our goal is to discuss both the technical issues related to the

design, development and publication of digital objects, as well as organizational issues

concerning the roles engineers and programmers play in the Web-based design process. Although

the discussion is oriented towards the aircraft design process, we believe that it is applicable to

engineering processes used in many fields.

Page 10 of35

4.1 Onyx
The modeling and simulation environment for our research is the Onyx simulation system [26.

271. The major features of Onyx include the following.

A set of object classes and interfaces for representing the physical attributes and topology of

the aircraft system is included. These classes comprise an object-oriented component architec-

ture capable of housing the analytical and geometric views of the various aircraft components

employed in the design process. The architecture facilitates and ensures object interoperability

among separately developed software components.

A visual assembly irtrerface is included for graphical creation and manipulation of aircraft

system models. It enables users to establish model design, control model execution and visu-

alize simulation output.

A dynamically-defined, run-time simzdation executive is included to control complex, multi-

level simulations.

A persistence engine capable of transparently accessing geometry and data stored in either

relational or object database management systems is included.

A connection service provides access to federated model and data repositories using standard

internet protocols. r-arious connection strategies to access Web- and server-based distributed

objects are included.

Our goal in creating Onyx is to develop a simulation-based design system that promotes

collaboration among aerospace designers and facilitates sharing of models, data and code. Special

emphasis is placed on developing a distributed system which fosters reuse and extension in both

the models and the simulation environment. To achieve these goals, we have made extensive use

of object-oriented technologies such as object-oriented frameworks, sofnvare components, and

design patterns.

An object-oriented framework is a set of classes that embodies an abstract design for solutions

to a family of related problems [191. Onyx is designed as a layered collection of frameworks, with

individual frameworks for the visual assembly interface, persistence engine, connection services,

Page 11 of 35

simulation executive and component architecture. The set of classes in each framework define a

“semi-complete” structure that captures the general functionality of the application or domain.

Specific functionality is added to Onyx by inheriting from, or composing with, framework

components. In the example in the next section, we will illustrate this by denying new classes to

represent the components in an aircraft engine, then assembling instances of those classes to form

a complete engine model.

A key characteristic of Onyx, and object-oriented frameworks in general. is its inverted control

structure. In traditional software development, the application developer writes the main body of

the application which defines a series of calls to various libraries of subroutines. These libraries

provide reusable code, while the main body is customized by the application developer. In

framework design, the control structure is defined by the framework, with predefined calls going

to methods that the application developer writes. In this approach, the design or structure of the

application - which is domain-specific - is reused, and the specific iunctionality of the

application is provided by the developer. Using this approach, Onyx reduces the burden for

aircraft engineers and modelers, allowing similar aircraft component mod& to be developed

faster and more efficiently. The concept of reuse is best illustrated for modtij that are assembled

from a library of components (i.e., composition), and for models that are made in several versions

with minor differences (i.e., inheritance).

A major product of object-oriented design is the identification of sofnvare components - self

contained software elements which can be controlled dynamically and assembled to form

applications. The central step in identifying them is recognizing rscumng fundamental

abstractions in the domain. By identifLing these abstractions and standardizing their interfaces,

these components become interchangeable. Such components are said to be ”plug-compatible” as

they permit components to be “plugged” into frameworks without redesign. Onyx’s software

components use a variant of the JavaBeans [7] component architecture to define standard

interfaces and abstractions. These components represent the “plug-compatible, digital objects”

with which the Web-based models of the aircraft and its subsystems are de\-eloped.

Page 12 of 35

Throughout the Onyx environment, design patterns -recurring solutions to problems that arise

when building software in various domains [131 - are used to achieve reuse. Patterns aid the

development of reusable software components and frameworks by expressing the structure and

collaboration of participants in a software architecture at a level higher than source code or object-

oriented design models that focus on individual objects and classes [31]. Patterns also are

particularly useful for documenting software architectures and design abstractions. They provide

a common and concise vocabulary which is useful in conveying the purpose of a @\-en software

design.

The Onyx simulation environment is designed to be both multi-tiered and platform

independent so as to provide the greatest flexibility when modeling complex aircraft systems. Java

was chosen as the implementation language as it offers extensive class libraries. a distributed

object model (Le., Java RMI), and byte-code interpreters on a wide range of computer

architectures, among other benefits. As a result, the Onyx system is extremely portable and

accessible. The visual assembly interface (described below), for example, can be run in the

context of a Web browser, which are widely available, while computationally intensive

components run on dedicated, distributed servers.

Java is also the preferred language for programming Onyx software componenrs. as models

written in Java are easily downloaded across a network and dynamically loaded into the Onyx

environment. In cases where it is desirable or necessary to use a programming languagz other than

Java, software components may be accessed from Onyx using COMA. CORI3A’s ability to deal

with the heterogeneous nature inherent in distributed computing environments makes it

particularly suitable for leveraging legacy applications not written in Java. This is especially

useful for simulation of aerospace systems in which the majority of existing analysis programs

have been written in procedural languages, such as FORTRAN and C. The use of C O M A adds

flexibility to the Onyx system allowing it to “wrap” these existing programs, rather than having to

replace or abandon them.

Page 13 of35

Reed. J . . I . , Foiien, G J: und Ajjeh. A. .-i.

4.2 Engine-Aircraft Integration Scenario
This scenario illustrates our vision of how Web-based modeling and simulation may be used in

the process of development and integration of an aircraft subsystem within the complete aircraft.

As stated earlier, the aircraft design process generally follows a hierarchical decomposition of the

aircraft system (see Fig. 2a) into major airframe components, e.g., Fuselage, Rudder, Wing and

Propulsion System (i.e., Engines). Individual engineering groups are responsible for establishing

the conceptual and preliminary designs for each respective component. These teams work

together, exchanging information as necessary, to develop the individual component designs, and

as the process progresses, to integrate them into a final design.

We have selected for our example the integration of the propulsion subsystem into the aircraft

because it represents one of the more complex aspects of aircraft design. Propulsion system

performance, size and weight are important factors in the overall aircraft design. Engine size and

thrust, for examp!e, influence the number and placement of engines, which in turn affects aircraft

safety, performance, drag, control and maintainability. Furthermore, because the engine is

designed and developed by an external manufacturer - Le., an engine company -this example

illustrates the challenges faced by designers separated both geographically and organizationally.

We intend to show how Web-based modeling and simulation can address these and other issues.

4.2.1 Model Authoring. As in the aircraft company, engineering design groups in the engine

manufacturer are generally organized according to a physical decomposition of the engine, with

individual teams responsible for developing the major engine components: Fan. Compressor,

Combustor, Turbine, Mixer, etc. (see Fig. 2b). In each team, a model author, having expertise in

the given design area, establishes a conceptual model of the component. During early phases of

design, model resolution is kept relatively coarse to speed simulations and enable more complete

exploration of the design space. Such a model typically consists of a set of algebraic andor

linearized ordinary differential equations which describe the component’s gross behavior. At this

stage in the design knowledge of component characteristics is incomplete, so empirical data

gathered from rig-testing of previously developed components are scaled to approximate the

Page 14 of 35

current model. These data, commonly referred to as “performance maps,” attempt to capture

component characteristics within their operating range, and serve to provide closure to the

equations.

4.2.2 Component Authoring. Once a conceptual model is validated, a component author,

working closely with the model author, maps the model to the computational domain, creating a

software component which encapsulates the model abstraction. As pointed out in section 3, the

mapping is largely dependent on the choice of component architecture being used. The Onyx

component architecture used here is based upon a control volume abstraction. The use of control

volumes is standard engineering practice, wherein the physical system is divided into discrete

regions of space - control volumes - which are then analyzed by applying conservation laws

(e.g., mass, momentum, energy) to yield a set of mathematical equations describing physical

behavior (see Fig. 3). A component archtecture predicated on this approach provides a

convenient and familiar mapping mechanism for modeling physical systems, and ensures that a

simulation component resembles the conceptual model developed by the model author. A brief

overview of the Onyx component architecture is presented below; a complete description can be

found in ref. [26].

4.2.3 Overview of Onyx Component Architecture. There are four basic entities in the Onyx

architecture: Element, Port, Connector and DomainModel (see Fig. 4). The Java interface

Element represents a control volume, and defines the key behavior for all engineering

component classes incorporated into Onyx. It declares the core methods needed to initialize, run

and stop model execution, as well as methods for managing attached Port objects. Classes

implementing this interface generally represent physical components, such as a compressor,

turbine blade, or bearing, to name a few (see Fig. 3b). However, they may also represent purely

mathematical abstractions such as a cell in a finite-volume mesh used in a CFD analysis. This

flexibility permits the component architecture to model a variety of physical systems.

Consider, for example, a component author in the Compressor design team wanting to develop

a representative Compressor digital object for uie in simulations during preliminary design. The

Page 15 of 35

Reed. J A . . Folleri. G. J. and Ajjeh. .,I. .4.

author begins by defining a concrete implementation of the Element interface, such as

Simplecompressor (see Fig. 4). Here the author extends the abstract class DefaultElement.

which captures common implementation aspects of the Element interface, as well as maintaining

a list of Port objects associated with its subclasses. Alternatively. the author could implement the

interface directly, explicitly defining each interface method. This feature is used through the

architecture to provide flexibility: the component author may select to utilize the default

functionality of the common abstract class, or inherit from another class hierarchy and implement

the interface directly.

An Element may have zero or more Port objects associated with it. The interface Port

represent a surface on a control volume (Le., Element) through which some entity (e.g., mass or

energy) or information passes. Ports are generally classified by the entity being transported

across the control surface. For example, the SimpleCompressor has two FluidPort objects -

representing the fluid boundaries at the Compressor entrance and exit - and a StructuralPort

object, representing the control surface on the Compressor through which mechanical energy is

passed (Le., from a driving shaft). The Port interface defines t\vo methods to set and retrieve the

data defined by the Port. These data may be stored in any type of Java Object, such as Hashtable

or Vector. The common abstract class, Defaultport, defines default functionality for these

methods, and maintains a reference to the Connector object currently connected to the Port.

The common boundary between consecutive control volumes is represented by a Connector

object. The interface Connector permits two Element objects to communicate by passing

information between connected Port objects (see Fig. 3c). It is also responsible for data

transformation and mapping in situations where the data being passed from Ports of different

type. The need for such data transformation can range from simple situations. such as conversion

of data units, to very complex ones involving a mismatch in model fidelity (e.g., connecting a 2-D

fluid model to a 3-D fluid model) or disciplinary coupling (e.g, mapping structural analysis results

from a finite-element mesh to a finite-volume mesh used for aerodynamic analysis).

Page 16 of35

For all but the simplest cases, the algorithms needed to perform the data transformation/’

mapping will tend to be very complex. To improve reusability. Connector delegates

transformatiodmapping responsibilities to a separate Transform object (see Fig. 3c) which

encapsulates the necessary intelligence to expand’contract data and map data across disciplines.

The Transform interface (see Fig 4) defines a general method, transform, which is implemented

by subclasses to carry out a particular transformation algorithm.

A similar situation is found with the mathematical model used to define component behavior.

As described above, the mathematical models used to describe Compressor (or any other

component) behavior during preliminary design are relatively simple and may be solved

analytically or using basic numerical methods. However, models used in latter phases of design

can be quite complicated. In these cases, approximate solutions are obtained by discretization of

the equations on a geometrical mesh and applying highly specialized numerical solvers. The

presence of these complex mathematical models and the numerical tools needed to solve them

suggest that it is desirable to encapsulate these features and remove them from the Element

structure. This enhances the modularity of Element, allowing new Element classes to be added

without regard to the mathematical model used. and conversely to add new models without

affecting the Element class. To achieve this, Onyx utilizes the Strategy design pattern [13] to

encapsulate the mathematical model in a separate type of object called DomainModel (see Fig.

4). The benefit of this pattern is that families of similar algorithms become interchangeable.

allowing the algorithm - in this case the DomainModel - to yary independently from the

Elements that use it. This admits the possibility of run-time selection of an appropriate

DomainModel for a given Element; however, this is currently not used in Onyx. Furthermore,

encapsulating the DomainModel in a separate object also encourages the “wrapping” of pre-

existing, external sofnvare packages. For example, the Fan DomainModel in Fig. 3d might

“wrap” a three-dimensional (3-D) Navier-Stokes or Euler flow solver to provide steady-state

aerodynamic analysis of fluid flow within the Fan. This approach allows proven functionality of

Page 17 of 35

existing software analysis packages to be easily integrated within an Elsment. Some of the

advantages of this concept is illustrated later in this section.

The DomainModel interface is designed to be very general, due to the complicated nature of

the various models which might be encapsulated in an Element. The intent is not to restrict the

use of any algorithm or the ”wrapping” of external software packages by overly defining the

DomainModel interface. Consequently, the interface defines only two methods, execute and halt,

which are used to start and stop the execution of the DomainModel code. Additional methods are

obviously needed to access and make the data internal to the DomainModel available to the

Element, but because these are specific to the particular DomainModel structure, they are not

included in the interface. For our example, the component author has defined a

SimpleCompressorModel class (see Fig. 4) to encapsulate the set of ordinary differential

equations and performance maps needed to model compressor behavior.

After the Compressor class definitions (i.e., SimpleCompressor, Fluidport. StructuralPort

and SimpleCompressorDomainModel) are established, the componsnr author compiles,

verifies and tests their operation. When complete. the class’ byte-code files and any auxiliary data

(e.g., performance maps) are combined to form a single Compressor sofmare component in the

form of a Java Archive (JAR) file. The JAR file format is useful for encapsulating components as

they can be compressed to reduce file size, digitally signed for added security, and easily

transferred across the Web.

4.2.4 Publishing the Component. The Compressor software component is “published” by

deploying it on a Web sen-er where it can be accessed by others in the engine company. We

envision that each engine component design team will maintain its own U b server, hosting the

software components it has developed (see Figure 5) . However, it may be easier and more

efficient to maintain all components on a single company-wide Web sener. In either case,

publishing the software component is the responsibility of the component deployer, who has

expertise in system and Web server administration. This expertise is necessary, since, in addition

Page 18 of 35

to simply placing components on a Web server, the component deployer is responsible for

addressing server configuration issues of component identification and security.

42.5 Accessing Components. One of the problems facing a user of a Web-based simulation

system is locating appropriate software components, objects or data, for use in a simulation. A

text-based search engine, similar to those used on the Web today, is one possible method to find

objects and components [9]. However, these tools suffer from the fact that they are oriented

towards HTML documents, rather than objects. A more object-oriented approach is to use naming

and directory services to catalog available simulation objects and components. Using a naming

service, the component deployer associates names with objects, providing the means to look up an

object given its name. CORBA and RMI are examples of distributed object systems that employ

naming services. Directory services extend naming services by adding attributes, making it

possible to search for objects given their attributes. These attributes may be used by the

component deployer to describe and hierarchically organize each component. For example, the

attributes may be specified which describe the component class name, model fidelity and

discipline. model author, or version number, as well as the manufacturer’s name and component

group, to name a few. Queries can be made to the directory service to find and return references to

objects matching one or more attributes. Lightweight Directory Access Protocol (LDAP) [38] and

NetWare Directory Service (NDS) [23] are examples of directory services which are used today.

Another important responsibility of the component deployer is establishing and maintaining

security policies controlling access to published software components. These components

represent significant investments in both time and money for the manufacturer. To protect their

intellectual property against theft through reverse engineering, it is important to ensure that

relevant data and software components can only be accessed by authorized users. Protection is

accomplished through the use of authentication and authorization mechanisms. Authentication

refers to the presence of an authentication protocol (e.,.., password, Kerberos ticket [24],or public

key certificate (X.509 [16], PGP [39], etc.) that identifies the requesting party (the principle),

while authorization grants access only if the principles identity (credentials) is included in a

Page 19 of 35

specific list (the access control list). or if the principle can assume a specific role (role-based

authorization). Both authentication and authorization mechanisms are typically included as part of

the naming and directory services, or as part of the Web server services. Using these mschanisms,

the component deployer can control who gains access to the server. and what data can be read.

Communication channels between a client and the Web server are also a source of security

concern. If the communication channel is a dedicated network connection (Le., intranet or

extranet), security problems are minimized due to physical isolation. If, hou wer, the

communication channel is the Web, physical isolation is impossible, and encryption mechanisms,

such as Secure Socket Layers (SSL) [151, must be used.

4.2.6 Building the Engine. Once the engine component design teams publish their preliminary

component objects, a system integrator, having expertise in system-level engine design. combines

individual component objects to create a first-order engine model. The system-level engine model

is developed using Onyx's visual assembly interface. Icons, representing individual engine

components (i.e., Elements), are selected from a component browser, dragged into a ivorkspace

window, and interconnected to form a schematic diagram (see Fig. 6).

The component browser, as its name implies, is a tool for browsing the objects and data stored

in a naming or directory service (see bottom-right comer of Fig. 6). Onyx current11 supports

access to common naming and directory services, such as NDS, LDAP, CORBA Xaming Service

(COS Naming), and Rh4I Registry, through the Java Naming and Directory Interface CJXDI) [181.

JNDI is an API that provides an abstraction that represents elements common to the most widely

available naming and directory services. JNDI also allows different services to be linked to

together to form a single logical namespace called a federated naming senice. Using the

component browser, Onyx users are ale to navigate across multiple naming and directory services

to locate simulation data, objects and components.

For security purposes, the component browser requires users to authenticate themselves before

they can retrieve any information from a naming or directory service. Once authentication has

been successfully completed, the user can browse or search (using attribute keywords) the entire

Page 20 of35

Reed. .j,.i., Foiiar. G. J'. unci djjch. :i. .'i.

namespace (subject to any authorization restrictions). Authentication and authorization

capabilities are provided through JN DI and the Java Authentication and Authorization Service

(JAAS) [22] framework. These tools allow the component browser to remain independent from

the underlying security services, which is an important concern when working in a heterogeneous

computing environment such as the Web.

Dragging an icon from the component browser to the workspace window causes the selected

software component to be downloaded from the server to the client machine. Components

comprised entirely of Java classes, such as the Compressor described above, are downloaded from

a Web server to the local file system where the byte-codes are extracted from the JAR file, loaded

into the Java Virtual Machine and instantiated for use in Onyx. Components developed in other

programming languages are not downloaded, but remain on the server. Instead, a proxy object

(stub), representing the component, is downloaded and used to connect to the remote Component

using a distributed object service, such as RMI, Voyager [37], CORBA, or DCOM. The need to

use remote components in the aircraft design process is discussed at the end of this section.

Onyx supports the creation of hierarchical component models, and an icon can represent both a

single component or an assembly of components. A component with subcomponents is called a

composite or structzired component. Components that are not structured are called primitive

components, since they are typically defined in terms of primitives such as variables and

equations. Composite components are represented by the CompositeElement class, which is

part of the Element hierarchy (see Fig. 4). The class structure, based on the Composite design

pattern [131, effectively captures the part-whole hierarchical structure of the component models,

and allows the uniform treatment of both individual objects and compositions of objects. Such

treatment is essential for providing the object interoperability needed to perform Web-based

model construction by composition.

Figure 6 shows a composite model representing an aircraft turbofan engine. The icon labeled

Core is a composite of components which are displayed in the lower schematic. Each icon has one

or more small boxes on its perimeter to represent its Ports. Connecting lines are drawn between

Page 21 of 35

the ports on different icons by dragging the mouse. A Connector object having the correct

Transform object needed to connect the two ports is created automatically by Onyx. Each icon

has a popup menu which can be used ”customize” the attributes of its Element, Port and

DomainModel objects. When selected, a graphical Customizer object is displayed (see upper-

right comer of Fig. 61, which can be used to view or edit the selected objects attributes. The visual

assembly interface also provides tools for plotting (see the lower-left comer of Fig. 6), editing

files, and browsing on-line documentation. More information on the design and implementation

of the visual assembly interface can be found in ref. [2 6] .

4.2.7 Engine-AircrajI Model Integration. The system integrator, working with the model and

component authors, performs a series of simulations to evaluate and improve the performance of

the first-order engine model. Component conceptual models are refined and new software

components developed, deployed and integrated, until all preliminary engine design requirements

are satisfied. The engine model is then “passed” to engineers in the aircraft design group for use in

their design process. This is accomplished by publishing the engine model as a

CompositeElement object in the same process as described above, except that the engine

component is deployed on a Web server accessible from networked locations outside the engine

company (i.e.. extranet). In the aircraft company, airframe designers use the preliminary engine

component (now a sub-component in the airframe system model) to design the control system,

size the airframe and design the planform (see Fig 5). An aircraft system integrator takes the

engine component and, using the Onyx visual assembly interface, assembles an airframe model

using components (e.g., rudder, fuselage, and wing) developed by aircraft design groups (see Fig.

6) in a process similar to the one described for the Compressor component. This model can then

be used to simulate gross aircraft performance.

4.2.8 Hierarchical Models. While the preliminary engine component is being used by the

aircraft design teams, the engine component teams continue to refine their designs. The

refinement requires sophisticated models which give a detailed description of the underlying

physical processes within the component. For instance, although the air flow through the

Page 22 of 35

Compressor might be adequately modeled as a quasi-one-dimensional, inviscid fluid in early

phases of design, the actual fluid flow is unsteady. three-dimensional (3-D) and characterized by

turbulence, boundap-layers and shocks. Similarly. at an early stage of design the Compressor

blades can be modeled as rigid, but for more detailed investigations it may be necessary to

account for blade deformation due to material elasticity and thermal loading. Thus, simulating the

behavior of complex components requires the development of a hierarchy of models, or

multimodel, which represent the component at differing levels of abstraction [101. These models

may include: lumped-parameter models. such as the one used to model the Compressor

component in preliminary design, or distributed parameter models such as fluid dynamics (CFD)

or structural mechanics (FEA). Each model is implemented using a numerical method best suited

to the application; s.g, an ordinary differential equation solver (ODE) for state-space models,

finite-element solvers for structural mechanics or finite-volume solver for fluid dynamics. The

specific numerical method implementation is encapsulated within the model. Figure 2c shows a

multimodel representins the Compressor blade and flowfield at differing levels of fidelity. At the

lowest level of fidelity. both the blade and flowfield are modeled using simple differential

equations and empirical data. At higher fidelities, both are modeled using sophisticated numerical

methods such as finits element analysis or computational fluid dynamics.

4.2.9 High-fidelity Distributed Components. The use of multimodels in Web-based modeling

and simulation is important because it allows designers to selectively refine the fidelity of their

model given the constraints (i.e., level of detail needed, the objective, the available knowledge,

given resources, etc.) of the simulation. However, digital objects containing higher-fidelity models

cannot be deployed in the same manner as the simple models described previously. High-fidelity

CFD and FEA software packages are (generally) not written in Java, and thus cannot be run in the

clients Java virtual machine. Even if this were possible, the packages are computationally

intensive, making them unsuitable for execution on the client computer. Therefore, high-fidelity

models are deployed as remote objects using distributed object services such as CORBA. This

approach offers several advantages:

Page 23 of35

(1) Ability to distribute a computationally intensive process across a number of processors

(2) Ability to leverage legacy code limited to platforms offering specific programming andor

operating systems by “wrapping” it in a remote object

(3) Specialization of computer execution environment (i.e., placement of codes on appropriate

computing platforms: such as visualization codes on high-end graphic workstations; com-

putationally intensive codes on supercomputers, etc.).

As with the preliminary component models, the high-fidelity component models can be integrated

into a system-level engine model by the engine system integrator, and used to simulate engine

operation. An engine simulation using a model composed of high-fidelity components would

provide detailed knowledge of the interaction effects between its components. Although these

interactions can be critical to engine performance, they are not currently quantifiable by engine

designers and therefore are unknown until after expensive hardware testing [5 , 141. Evaluation of

these effects will allow engine engineers to make better design decisions earlier in the design

process, before the principle design features have been frozen. Each high-fidelity component

would perform its computations using a wrapped analysis package located on one or more remote

computers. For example. in Fig. 5 , the Fan component is run on a supercomputer. while a parallel

software package is used to simulate Compressor operation using a cluster of computers.

The high-fidelity engine model is also a valuable resource to aircraft designers, and once the

model is published, can be used in the aircraft model. The engine model allows aircraft designers

to investigate the flowfield around aircraft nacelle (the cowling structure around the engine) and

fbselage. Detailed descriptions of flow features at the engine exit (e.g.. shocks and expansion

waves), could allow aircraft designers to better predict the drag caused by the jet exhaust flowing

along the aircraft surface. Engine designers would also benefit from a high-fidelity, integrated

engine-aircraft simulation. For example, an integrated simulation could allow engine designers to

study distortions in the airflow entering the engine when the aircraft is at a high angle of attack.

Evaluation of this operating condition is important because distortions can cause the compressor

to stall and the engine to lose thrust. A detailed engine-aircraft integration study would provide

Page 24 of 35

valuable information which engine and aircraft engineers could use to better and more quickly

design the aircraft.

5 Concluding Remarks

The design of complex systems involves the work of many specialists in Lanous disciplines,

each dependent on the work of other groups. When a single designer or core tzam is able to

control the entire design process, difficulties in communication and organization are minimized.

However, as design problems become more complex, the number and size of disciplinary groups

increases, and it becomes more difficult for a central group to manage the process. As the design

process becomes more decentralized. communications requirements become more severe. These

difficulties are particularly evident in the design of aircraft, a process that in\ olves complex

analyses, many disciplines, and a large design space [20]. The lack of enabling software

supporting disciplinary analysis by geographically dispersed engineering groups further

aggravates these problems.

In this paper we have argued that Web-based simulation has the potential 10 improve the

aircraft design process, allowing companies to become more competitive through condensed

cycle times and better products. This improvement is due, in part, to the abilin. of the Web to

support collaborative modeling and distributed model execution in a heterogenzous computing

environment. A central focus of this strategy is the move towards a Web based on digital objects

which can be published and reused to form new models.

Using a component architecture such as the one defined in the Onyx environment, digital

objects can be developed which represent the hierarchical topology of physical systems, making

them ideal as models of aircraft systems. Furthermore, these objects can encapsulate multimodels,

including geometry models, multidisciplinary models and models having multiple levels of

fidelity. Such models are ideal for concurrent design environments, since all of the modeling

information is available in one place. The component architecture class structure provides the

Reed, J . A . , Follen, G. J. and.-lJeii. A. ‘-1

capability to wrap existing software packages. This is extremely important in providing

collaborative and integrative environment for the aircraft design process.

A World-Wide Web populated with digital objects provides the foundation for modeling by

composition. Onyx’s component architecture defines the standard interfaces needed to

dynamically compose new objects and the visual assembly interface makes composition simple

and easy. This promotes model reuse, as well as reducing new model development time.

The Onyx environment supports the distribution of simulation models across the Web. Both

Web-based model distribution (in the case of Java-based models) and distributed services

approaches (e.g., CORBA, COM) are provided. Each of these increase Onyx’s usability, as

models can be placed virtually anywhere. The C O M A bindings make it possible to integrate non-

Java language distributed objects and legacy code. Also, since Onyx is written entirely in Java, it

is portable without modifications to any computing platform which supports the Java Virtual

Machine. Heterogeneous computing support makes the Onyx Web-based simulation system

extremely viable for use in the heterogeneous computing environments typical of aircraft

companies. Most importantly, it allows access to existing legacy codes and access to codes which

must operate on specific architectures or operating systems.

References

Arnold, K. and Gosling, J., 1996, The Java Programming Language, Addison Wesley

Publishing Company, Inc., Reading, MA.

Berners-Lee, T., 1996, “WWW: Past, Present, and Future,” Computer, 29(10) p. 69.

Birtwistle, G., Dahl, O., Myhrhaug, B. and Nygaard, K., 1973, Simula begin. Petrocelli

Charter, New York.

Cardelli, L., 1994, “Obliq: A Language with Distributed Scope,” Research Report 122,

Digital Equipment Corporation Systems Research Center, Palo Alto, C.4. On-line

document. Available at http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-

122. html.

Claus, R. W., Evans, A. L., Lytle, J. K., and Nichols, L. D., 1991, “Numerical Propulsion

Page 26 of35

Reed, j . 4 . . Foiien. G. .I. und.-ijjeh, .i. A

System Simulation,” Computing Systems in Engineering, Vol. 2, pp. 357-364

Eddon, G. and Eddon, H., 1998, Inside Distributed COiLl, Microsoft Press, Redmond,

Washington.

Englander, R., 1997, Developing Java Beans, O’Reilly & Associates, Inc., Sebastopol, CA.

Fishwick, P.A., 1996, “Web-Based Simulation: Some Personal Observations,” Proceedings

of the 1996 Winter Simulation Conjerence, J.M. Charnes, D.J. Momce, D.T. Brunner and

J.J. Swaim (eds.), pp. 772-779, Coronado, CA.

Fishwick, P.A., 1998, “Issues with Web-Publishable Digital Objects,” Proceedings of SPIE:

Enabling Technologies for Simulation Science II, pp. 136-142, Orlando, FL, April 14-16.

[101 Fishwick P. A. and Zeigler, B. P., 1992, “A Multimode1 Methodology for Qualitative Model

Engineering,” ACM Transactions on Modeling and Computer Simulation, Vol. 12, pp. 52-

81.

[6]

[7]

[8]

[9]

[l l] Fishwick, P.A., Hill, D.R.C. and Smith, R., Eds., 1998, Proceedings of the 1998

International Conference on Web-Based Modeling and Simulation. SCS Simulation Series

30(1).

[12] Freeman, E., Hupfer, S., and Arnold, K., 1999, JavaSpaces*“ Principles, Patterns, and

Practice, Addison- Wesley.

[13] Gamma, E., Helm, R, Johnson, R., and Vlissides, J., 1995, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison Wesley Publishing Company, Inc., Reading,

MA.

[14] Hall, E.J., Delaney, R.A., Lynn, S.R. and Veres, J.P., 1998, “Energy Efficient Engine Low

Pressure Subsystem Aerodynamic Analysis,” AIAA Paper No. 98-3 1 19.

[151 Hickman, K.E.B., 1995, The SSL Protocol. Available at http://home.netscape.com/eng/security/
SSL-2.html.

[16] Housley, R., Ford, W., Polk, T., and Solo, D., 1999, “Internet X.509 Public Key

Infrastructure Certificate and CRL Profile. Request for Comments 2459,” Internet

Engineering Task Force. Available at http://www.imc.org/rfc2459 .
[171 Jameson, A., 1997, “Re-Engineering the Design Process through Computation,” AIAA

Paper No. 97-0641.

[181 Java Naming and Directory Interface. Available at http:/ljava.sun.com/productsljndi/index.html.

[19] Johnson R. E. and Foote, B., 1988, “Designing Reusable Classes, The Journal Of Object-

Page 27 of 35

Oriented Programming,” 1(2), pp. 22-35.

[20] Kroo. I., Alms, S., Braun, R.. Gage, P., and Sobieski, I., 1994. “Multidisciplinary

Optimization Methods for Aircraft Preliminary Design,” AIAA Paper No. 94-4325.

[21] Kuhl, F., Weatherly, R. and Dahmann. J., 1999, Creating Computer Simulation Systems: An

Introduction to the High Level Architecture, Prentice Hall.

[22] Lai, C., Gong, L., Koved, L., Nadalin, A. and Schemers, R. 1999, “User Authentication And

Authorization In The JavaTM Platform,” To appear in Proceedings of the 15th Annual

Computer Security Applications Conference, Phoenix, AZ.

[23] Lindberg, K.J.P., 1998, Novell’s iVetware 5 Administrator’s Handbook, IDG Books

Worldwide.

[24] Neuman, B.C. and Ts’o, T., 1994, “Kerberos: An Authentication Service for Computer

Networks,” IEEE Communications, 32(9), pp.33-38.

[25] Page. E.H. and Opper, J.M., 1999, “Investigating the Application of Web-Based Simulation

Principles within the Architecture for a Next-Generation Computer Generated Forces

Model.” Future Generation Computer Svstems, to appear.

[26] Reed. J.A., 1998, “Onyx: An Object-Oriented Framework for Computational Simulation of

Gas Turbine Systems,” Ph.D. dissertation, The University of Toledo, Toledo, Ohio.

[27] Reed. J.A., and Afjeh, A.A., 1998, “An Object-Oriented Framework for Distributed

Computational Simulation of Aerospace Propulsion Systems,” Proceedings of the 4th

USE-YIX Conference on Object-Oriented Technologies and S,vstems (COOTS), Santa Fe,

New Mexico.

[28] Ridlon, S. A., 1996, “A Software Framework for Enabling Multidisciplinary Analysis and

Optimization,” AIAA Paper No. 96-4133.

[29] Rogerson, D., 1996, h i d e COM, Microsoft Press, Redmond, Washington.

[30] Schatz. B.R., and Hardin, J.B., 1994, “NCSA Mosaic and the World Wide Web: Global

Hypermedia Protocols for the Internet,” Science, 265, p. 895.

[31] Schmidt, D. C., 1997, “Applying Design Patterns and Frameworks to Develop Object-

Oriented Communications Software,” Handbook of Programming Languages, Volume I, P.

Salus, ed., MacMillian Computer Publishing.

[32] Smith. R.B., and Ungar, D., 1995, “Programming as an Experience: The Inspiration for

Self,” Proceedings of ECOOP’95.

Page 28 of35

Reed. J..4.. Foiien. G. J-. ann“.ijjen, i. .d

[33] Watters, A., van Rossum, G.. and Xhlstrom, J., 1996, Internet Programming with Python,

MIS PressiHenry Holt Publishers.

[34] Wirth, N. and Gutknecht, J., 1989, ”The Oberon System,” Software: Updated Practice and

Experience, 19(9), p. 857.

[35] Wollrath, A., kggs, R. and Waldo. J., 1996, “‘A Distributed Object Model for the JavaTM

System,” Proceedings of the Second USENIX Conference on Object-Oriented Technology

and Systems (COOTS), pp. 2 19-23 1.

[36] Vinoski, S, 1997, “CORBA: Integrating Diverse Applications Within Distributed

Heterogeneous Environments,” I€€€ Communications, 35(2), pp. 46-55.

[37] Voyager, 1997, “Voyager: The Agent ORB for Java” Online document. Available at http://

w,objectspace.com/.

[38] Yeong, W., Howes, T., and S. Kille, “Lightweight Directory Access Protocol”, Request For

Comments 1777.” Internet Engineering Task Force. Available at http://www.ietf.org/rfc/

rfcl777.txt.

[39] Zimmerman. P. 1994, PGP User’s Guide, MIT Press, Cambridge, 1994.

Page 29 of 35

t h
Aerodynamic

f

Structural
Analysis

Additional
Disciplines +-

I Concepal
Design

FI Deht ion

I Detailed Final
Design

I Model k Fabrication
Experimental

Testing

Figure 1: The Aircraft Design Process. The process
involves conceptual, preliminary and detailed final design
phases. The preliminary design phase includes both major
and minor design loops. In the minor design loop, separate
disciplinary analysis such as aerodynamic, propulsion,
and structural analysis are carried out. Additional
disciplinary analysis, such as controls, loading, stability,
acoustics, etc. have been omitted for clarity. Once a design
is converged upon in the minor loop, i t is experimentally
tested in the major design loop. After convergence of the
major design loop, the detailed final design phase is
executed.

Page 30 of 35

0-D

1-D

h
a 2-D
Y
.II I

3-D

I I

, I .,

I

I I Velocity : m l m l I : I Diagram

Beam Model
I
I
I
I
I

I
I
I
I
I

I
I
I
I

I 1 2-D Grid ' 1
I 1
I I

FEA Disk Model

Figure 2: (a) Decomposition of aircraft into high-level components; (b)
decomposition of engine component; and (c) collection of models (multimodels) at
differing levels of fidelity and discipline for Compressor component.

Page 3 1 of 35

/ e Fan Control /
Compressor

\

'\
Control

- .- - - Volume Volume I . -. - - - - - J I ' - \
Conservation Equations

continuity aP = -v.(pV)

momentum -(pv) - v.(pvv) = - v (p - VOT)

energy

1
at
a
at
a ;Illpel = -v.(prv - q A n v)

,

: Fluid I
Element : Port

' . : \

/

Structural:
Port

. . .
- - - - - - - - : ---:: @ Z?-.?:--. . 5..?C...,. r - - --.-

Figure 3: Mapping of engine physical domain to computational framework.
(a) Engine is decomposed into separate components, such as the Fan and
Compressor. Component control volumes are defined (b), with behavior
defined by conservation laws. Components are represented in Onyx as
Elements (c), whose Ports a r e connected by Connectors. Component behavior
is defined by a DomainModel (d) which may apply numerical discretization
methods to solve the conservation equations. Data exchange at control volume
boundaries is passed via Ports and Connectors, with multifidelity and
interdisciplinary mapping handled by Transform objects.

Page 32 of 35

interface
E l m m I

+ init0
+ run0
+ stopo
+ add0
+ remove0
+ addFtxrO
+ remreR~rf0
+ ger&uO
+ gerElemen/lnfoO

I

4

I

171

I*l po r t s I
+ In#o

t rum
+ stop0
i add0
i remove0
t addPofl0
+ remotePortO
t getPons0

+ gecDataSal:

h- n-
ch i ld ren

model

t gerElemenIlnfo0
t inn0
truno o interface I Conneaw 1- + runQ o

t stopo ;

forall c in children 1 model.execute0; L F L , Lj I

4
interface

DanuiHodcl
t getDataSet0

interface Lm
I t execute0 I + hait0

CwressorDoMnModd -h- I + execute0 I t haHO

Figure 4: A portion of the Onyx component architecture class structure.

Page 33 of35

Rudder Design
Team Server

Naming/

bind Wing Server - - - - - 4- - - - 1 bu7dFuselage - - - - - - - - - - - - - - - - - -

Engine
Company
Server 4

I

Deployer

Engine
Component 4

I

Supercomputer L

r - -

Design Team
Compressor

Server

bind Compressor

I
-

I Naming/
I lookup Directory
I - - - - - - - - - - - - - - - - _ _

I
I

I : I 1

Mixer Design I 1 0 FanDesign
Team Server I I I Team Server

4 A
e

Figure 5: Exchange of digital objects in a Web-based simulation environment.

Page 34 of35

~~ ~~~

Figure 6: Overview of Onyx Visual Assembly Interface.

Page 35 of35

